日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)A(x1,y1),B(x2,y2),C(x3,y3)為反比例函數(shù)y=
          k2-1
          x
          (k>1)圖象上的三點(diǎn),且x1<0<x2<x3,比較y1、y2、y3的大。ā 。
          分析:先根據(jù)反比例函數(shù)的解析式判斷出函數(shù)圖象所在的象限,再根據(jù)A、B、C三點(diǎn)橫坐標(biāo)的特點(diǎn)判斷出三點(diǎn)所在的象限,由函數(shù)的增減性及四個(gè)象限內(nèi)點(diǎn)的橫縱坐標(biāo)的特點(diǎn)即可解答.
          解答:解:∵反比例函數(shù)y=
          k2-1
          x
          中,k>1,則k2-1>0,
          ∴此函數(shù)的圖象在一、三象限,在每一象限內(nèi)y隨x的增大而減小,
          ∵x1<0<x2<x3,
          ∴y1<0,y2>0、y3>0,
          ∵x2<x3,
          ∴y2>y3
          ∴y2>y3>y1
          故選C.
          點(diǎn)評(píng):本題比較簡(jiǎn)單,考查的是反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),解答此題的關(guān)鍵是熟知反比例函數(shù)的增減性.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)A(x1,y1),B(x2,y2)為函數(shù)y=
          k2-1x
          圖象上的兩點(diǎn),且x1<0<x2,y1>y2,則實(shí)數(shù)k的取值范圍是
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知C、D是雙曲線(xiàn)y=
          m
          x
          在第一象限分支上的兩點(diǎn),直線(xiàn)CD分別交x軸、y軸于A、B兩點(diǎn).設(shè)C(x1,精英家教網(wǎng)y1)、D(x2,y2),連接OC、OD(O是坐標(biāo)有點(diǎn)),若∠BOC=∠AOD=α,且tanα=
          1
          3
          ,OC=
          10

          (1)求C、D的坐標(biāo)和m的值;
          (2)雙曲線(xiàn)上是否存在一點(diǎn)P,使得△POC和△POD的面積相等?若存在,給出證明,若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)A( x1,y1)、B (x2,y2)是反比例函數(shù)y=-
          2
          x
          圖象上的兩點(diǎn).若x1<x2<0,則y1與y2之間的關(guān)系是( 。
          A、y1<y2<0
          B、y2<y1<0
          C、y2>y1>0
          D、y1>y2>0

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知C,D是雙曲線(xiàn)y=
          m
          x
          (x>0)上的兩點(diǎn),直線(xiàn)CD分別交x軸,y軸于A,B兩點(diǎn).設(shè)C(x1,y1精英家教網(wǎng),D(x2,y2),連接OC,OD(O是坐標(biāo)原點(diǎn)),若∠BOC=∠AOD=α,且tanα=
          1
          3
          ,OC=
          10

          (1)求C,D的坐標(biāo)和m的值;
          (2)雙曲線(xiàn)存在一點(diǎn)P,使得△POC和△POD的面積相等,求點(diǎn)P的坐標(biāo);
          (3)在(2)的條件下判斷點(diǎn)P是否為△OCD的重心.
          (4)已知點(diǎn)Q(-2,0),問(wèn)在直線(xiàn)AC上是否存在一點(diǎn)M使△MOQ的周長(zhǎng)L取得最短?若存在,求出L的最小值并證明;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          讓我們一起來(lái)探索平面直角坐標(biāo)系中平行四邊形的頂點(diǎn)的坐標(biāo)之間的關(guān)系.
          第一步:數(shù)軸上兩點(diǎn)連線(xiàn)的中點(diǎn)表示的數(shù).自己畫(huà)一個(gè)數(shù)軸,如果點(diǎn)A、B分別表示-2、4,則線(xiàn)段AB的中點(diǎn)M表示的數(shù)是
          1
          1
          . 再試幾個(gè),我們發(fā)現(xiàn):數(shù)軸上連接兩點(diǎn)的線(xiàn)段的中點(diǎn)所表示的數(shù)是這兩點(diǎn)所表示數(shù)的平均數(shù).
          第二步;平面直角坐標(biāo)系中兩點(diǎn)連線(xiàn)的中點(diǎn)的坐標(biāo)(如圖①)為便于探索,我們?cè)诘谝幌笙迌?nèi)取兩點(diǎn)A(x1,y1),B(x2,y2),取線(xiàn)段AB的中點(diǎn)M,分別作A、B到x軸的垂線(xiàn)段AE、BF,取EF的中點(diǎn)N,則MN是梯形AEFB的中位線(xiàn),故MN⊥x軸,利用第一步的結(jié)論及梯形中位線(xiàn)的性質(zhì),我們可以得到點(diǎn)M的坐標(biāo)是(
          x1+x2
          2
          x1+x2
          2
          ,
          y1+y2
          2
          y1+y2
          2
           )(用x1,y1,x2,y2表示),AEFB是矩形時(shí)也可以.我們的結(jié)論是:平面直角坐標(biāo)系中連接兩點(diǎn)的線(xiàn)段的中點(diǎn)的橫(縱)坐標(biāo)等于這兩點(diǎn)的橫(縱)坐標(biāo)的平均數(shù).
          第三步:平面直角坐標(biāo)系中平行四邊形的頂點(diǎn)坐標(biāo)之間的關(guān)系(如圖②)在平面直角坐標(biāo)系中畫(huà)一個(gè)平行四邊形ABCD,設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),則其對(duì)角線(xiàn)交點(diǎn)Q的坐標(biāo)可以表示為Q(
          x1+x3
          2
          x1+x3
          2
          ,
          y1+y3
          2
          y1+y3
          2
          ),也可以表示為Q(
          x2+x4
          2
          x2+x4
          2
          y2+y4
          2
          y2+y4
          2
           ),經(jīng)過(guò)比較,我們可以分別得出關(guān)于x1,x2,x3,x4及,y1,y2,y3,y4的兩個(gè)等式是
          x1+x3=x2+x4
          x1+x3=x2+x4
          y1+y3=y2+y4
          y1+y3=y2+y4
          . 我們的結(jié)論是:平面直角坐標(biāo)系中平行四邊形的對(duì)角頂點(diǎn)的橫(縱)坐標(biāo)的
          和相等
          和相等

          查看答案和解析>>

          同步練習(xí)冊(cè)答案