日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,平面直角坐標(biāo)系中有等邊△AOB,點(diǎn)O為坐標(biāo)原點(diǎn),OB=2,平行于x軸且與x軸的距離為1的線段CD分別交y軸、AB于點(diǎn)CD.若線段CD上點(diǎn)P與△AOB的某一頂點(diǎn)的距離為,則線段PC(PC<2.5)的長(zhǎng)為____________

          【答案】-122-2

          【解析】過(guò)點(diǎn)AAEOBCD于點(diǎn)F,根據(jù)已知可求得OE=,AE=3,AF=2,AFCD,然后根據(jù)AP=,OP=,BP=三種情況分別討論即可得.

          過(guò)點(diǎn)AAEOBCD于點(diǎn)F,

          ∵△AOB是等邊三角形,OB=2

          OE=,AE=3,

          OC=1,CDOB,CF=OE=,AF=AE-OC=2,AFCD,

          ∵點(diǎn)PCD上,AP=,

          PF==1,且點(diǎn)P可以在點(diǎn)F左側(cè),也可以在點(diǎn)F右側(cè);

          當(dāng)點(diǎn)P在點(diǎn)F左側(cè)時(shí),PC=CF-PF=-1<2.5;

          當(dāng)點(diǎn)P在點(diǎn)F右側(cè)時(shí),PC=CF+PF=+1>2.5,舍去;

          當(dāng)OP=時(shí),過(guò)PPHx軸,∴PH=1,

          OH==2,PC=OH=2<2.5;

          同理當(dāng)BP=時(shí),BH==2,

          PC=OH=OB-BH=2-2<2.5,

          綜上,PC=-122-2,

          故答案為:-122-2.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在ABCD中,AE⊥BC于點(diǎn)E,延長(zhǎng)BC至點(diǎn)F使CF=BE,連結(jié)AF,DE,DF.

          (1)求證:四邊形AEFD是矩形;

          (2)若AB=6,DE=8,BF=10,求AE的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,AB為半圓O在直徑,AD,BC分別切⊙O于A,B兩點(diǎn),CD切⊙O于點(diǎn)E,連接OD,OC,下列結(jié)論:①∠DOC=90°,②AD+BC=CD,③SAOD:SBOC=AD2:AO2 , ④OD:OC=DE:EC,⑤OD2=DECD,正確的有(

          A.2個(gè)
          B.3個(gè)
          C.4個(gè)
          D.5個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在圓心角為90°的扇形OAB中,半徑OA=2cm,C為 的中點(diǎn),D、E分別是OA、OB的中點(diǎn),則圖中陰影部分的面積為cm2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直線AB是某天然氣公司的主輸氣管道,點(diǎn)C、D是在AB異側(cè)的兩個(gè)小區(qū),現(xiàn)在主輸氣管道上尋找支管道連接點(diǎn),向兩個(gè)小區(qū)鋪設(shè)管道。有以下兩個(gè)方案:

          方案一:只取一個(gè)連接點(diǎn)P,使得像兩個(gè)小區(qū)鋪設(shè)的支管道總長(zhǎng)度最短,在圖中標(biāo)出點(diǎn)P的位置,保留畫(huà)圖痕跡;

          方案二:取兩個(gè)連接點(diǎn)MN,使得點(diǎn)MC小區(qū)鋪設(shè)的支管道最短,使得點(diǎn)ND小區(qū)鋪設(shè)的管道最短. 在途中標(biāo)出M、N的位置,保留畫(huà)圖痕跡;

          設(shè)方案一中鋪設(shè)的支管道總長(zhǎng)度為L1,方案二中鋪設(shè)的支管道總長(zhǎng)度為L2,則L1L2的大小關(guān)系為:L1_______L2(填“>”、“<”“=”)理由是____________________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A在函數(shù) 的圖象上,AB⊥ 軸于點(diǎn)B,AB的垂直平分線與 軸交于點(diǎn)C,與函數(shù) 的圖象交于點(diǎn)D。連結(jié)AC,CB,BD,DA,則四邊形ACBD的面積等于( )

          A. 2
          B.
          C.4
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖:在數(shù)軸上A點(diǎn)表示數(shù)aB點(diǎn)示數(shù)b,C點(diǎn)表示數(shù)cb是最小的正整數(shù),且a,b滿(mǎn)足 +(c-7)2=0.

          (1) a= ,b= c=

          (2) 若將數(shù)軸折疊,使得A點(diǎn)與C點(diǎn)重合,則點(diǎn)B與數(shù) 表示的點(diǎn)重合.

          (3) 點(diǎn)A,B,C開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC.則AB= ,AC= ,BC= .(用含t的代數(shù)式表示)

          (4) 請(qǐng)問(wèn):3BC-2AB的值是否隨著時(shí)間t的變化而改變? 若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】定義:如圖1,拋物線 軸交于A,B兩點(diǎn),點(diǎn)P在拋物線上(點(diǎn)P與A,B兩點(diǎn)不重合),如果△ABP的三邊滿(mǎn)足 ,則稱(chēng)點(diǎn)P為拋物線 的勾股點(diǎn)。

          (1)直接寫(xiě)出拋物線 的勾股點(diǎn)的坐標(biāo);
          (2)如圖2,已知拋物線C: 軸交于A,B兩點(diǎn),點(diǎn)P(1, )是拋物線C的勾股點(diǎn),求拋物線C的函數(shù)表達(dá)式;
          (3)在(2)的條件下,點(diǎn)Q在拋物線C上,求滿(mǎn)足條件 的點(diǎn)Q(異于點(diǎn)P)的坐標(biāo)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】根據(jù)生物學(xué)研究結(jié)果,青春期男女生身高增長(zhǎng)速度呈現(xiàn)如下圖規(guī)律,由圖可以判斷,下列說(shuō)法錯(cuò)誤的是(
          A.男生在13歲時(shí)身高增長(zhǎng)速度最快
          B.女生在10歲以后身高增長(zhǎng)速度放慢
          C.11歲時(shí)男女生身高增長(zhǎng)速度基本相同
          D.女生身高增長(zhǎng)的速度總比男生慢

          查看答案和解析>>