日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,直線與拋物線相交于A,B兩點(diǎn),與x軸正半軸相交于點(diǎn)D,與y軸相交于點(diǎn)C,設(shè)△OCD的面積為S,且。
          (1)求b的值;
          (2)求證:點(diǎn)在反比例函數(shù)的圖象上;
          (3)求證:

          (1)
          (2)把直線解析式化為,代入得到關(guān)于y的一元二次方程,根據(jù)一元二次方程根與系數(shù)的關(guān)系,得到,從而點(diǎn)在反比例函數(shù)的圖象上。
          (3)首先根據(jù)勾股定理和逆定理證明△OAB是直角三角形,從而得到△AEO∽△OFB,得比例式即可得證。

          解析分析:(1)由直線與x軸正半軸相交于點(diǎn)D,與y軸相交于點(diǎn)C,求出OC,OD,從而根據(jù)已知列式求解即可。
          (2)把直線解析式化為,代入得到關(guān)于y的一元二次方程,根據(jù)一元二次方程根與系數(shù)的關(guān)系,得到,從而點(diǎn)在反比例函數(shù)的圖象上。
          (3)首先根據(jù)勾股定理和逆定理證明△OAB是直角三角形,從而得到△AEO∽△OFB,得比例式即可得證。
          解:(1)∵直線與x軸正半軸相交于點(diǎn)D,與y軸相交于點(diǎn)C,
          ∴令x=0,得;令y=0,得!郞C=,OD=。
          ∴△OCD的面積
          ,∴,解得。
          ,∴。
          (2)證明:由(1),直線解析式為,即,代入,得,
          整理,得
          ∵直線與拋物線相交于A,B
          ,是方程的兩個(gè)根。
          ∴根據(jù)一元二次方程根與系數(shù)的關(guān)系,得。
          ∴點(diǎn)在反比例函數(shù)的圖象上。
          (3)證明:由勾股定理,得,
          由(2)得。
          同理,將代入,
          ,即
          。
          。
          ,∴。
          ∴△OAB是直角三角形,即∠AOB=900
          如圖,過點(diǎn)A作AE⊥x軸于點(diǎn)E,過點(diǎn)B作BF⊥x軸于點(diǎn)F,

          ∵∠AOB=900,
          ∴∠AOE=900-∠BOF=∠OBF。
          又∵∠AEO =∠OFB=900,
          ∴△AEO∽△OFB!
          ∵OE=,BF=,∴

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點(diǎn)O,頂點(diǎn)為C

          (1)求拋物線的函數(shù)解析式.
          (2)設(shè)點(diǎn)D在拋物線上,點(diǎn)E在拋物線的對(duì)稱軸上,且以AO為邊的四邊形AODE是平行四邊形,求點(diǎn)D的坐標(biāo).
          (3)P是拋物線上第一象限內(nèi)的動(dòng)點(diǎn),過點(diǎn)P作PM⊥x軸,垂足為M,是否存在點(diǎn)P,使得以P,M,A為頂點(diǎn)的三角形與△BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知拋物線(a>0)與x軸交于點(diǎn)B、C,與y軸交于點(diǎn)E,且點(diǎn)B在點(diǎn)C的左側(cè).

          (1)若拋物線過點(diǎn)M(﹣2,﹣2),求實(shí)數(shù)a的值;
          (2)在(1)的條件下,解答下列問題;
          ①求出△BCE的面積;
          ②在拋物線的對(duì)稱軸上找一點(diǎn)H,使CH+EH的值最小,直接寫出點(diǎn)H的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,拋物線經(jīng)過△ABC的三個(gè)頂點(diǎn),點(diǎn)A坐標(biāo)為(0,3),點(diǎn)B坐標(biāo)為(2,3),點(diǎn)C在x軸的正半軸上.
          (1)求該拋物線的函數(shù)關(guān)系表達(dá)式及點(diǎn)C的坐標(biāo);
          (2)點(diǎn)E為線段OC上一動(dòng)點(diǎn),以O(shè)E為邊在第一象限內(nèi)作正方形OEFG,當(dāng)正方形的頂點(diǎn)F恰好落在線段AC上時(shí),求線段OE的長;
          (3)將(2)中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)平移的距離為t,正方形DEFG的邊EF與AC交于點(diǎn)M,DG所在的直線與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,請(qǐng)說明理由;
          (4)在上述平移過程中,當(dāng)正方形DEFG與△ABC的重疊部分為五邊形時(shí),請(qǐng)直接寫出重疊部分的面積S與平移距離t的函數(shù)關(guān)系式及自變量t的取值范圍;并求出當(dāng)t為何值時(shí),S有最大值,最大值是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知:y=y1+y2,y1與x2成正比例,y2與x成反比例,且x=1時(shí),y=3;x=﹣1時(shí),y=1.求x=﹣ 時(shí),y的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,拋物線交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)B.

          (1)求直線AB對(duì)應(yīng)的函數(shù)關(guān)系式;
          (2)有一寬度為1的直尺平行于x軸,在點(diǎn)A、B之間平行移動(dòng),直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點(diǎn)的橫坐標(biāo)為m,且0<m<3.試比較線段MN與PQ的大小.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點(diǎn)為O,A點(diǎn)坐標(biāo)為(4,0),B點(diǎn)坐標(biāo)為(﹣1,0),以AB的中點(diǎn)P為圓心,AB為直徑作⊙P的正半軸交于點(diǎn)C.

          (1)求經(jīng)過A、B、C三點(diǎn)的拋物線所對(duì)應(yīng)的函數(shù)解析式;
          (2)設(shè)M為(1)中拋物線的頂點(diǎn),求直線MC對(duì)應(yīng)的函數(shù)解析式;
          (3)試說明直線MC與⊙P的位置關(guān)系,并證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:單選題

          已知函數(shù)y=的圖象如圖,以下結(jié)論:
          ①m<0;
          ②在每個(gè)分支上y隨x的增大而增大;
          ③若點(diǎn)A(﹣1,a)、點(diǎn)B(2,b)在圖象上,則a<b;
          ④若點(diǎn)P(x,y)在圖象上,則點(diǎn)P1(﹣x,﹣y)也在圖象上.
          其中正確的個(gè)數(shù)是(  )

          A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:單選題

          如圖,Rt△ABC的頂點(diǎn)B在反比例函數(shù)y=的圖象上,AC邊在x軸上,已知∠ACB=90°,∠A=30°,BC=4,則圖中陰影部分的面積是

          A.12 B.4 C.12- D.12-3

          查看答案和解析>>

          同步練習(xí)冊(cè)答案