【題目】4-(-7)=( )
A.3 B.11 C.-3 D.-11
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教材母題 點P(x,y)在第一象限,且x+y=8,點A的坐標(biāo)為(6,0).設(shè)△OPA的面積為S.
(1)用含有x的式子表示S,寫出x的取值范圍,畫出函數(shù)S的圖象;
(2)當(dāng)點P的橫坐標(biāo)為5時,△OPA的面積為多少?
(3)△OPA的面積能大于24嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“趙爽炫圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽炫圖”是由四個全等直角三角形和一個小正方形拼成的一個大正方形,設(shè)直角三角形較長直角邊長為,較短直角邊長為
,若(a+b)2=21,大正方形的面積為13,則小正方形的邊長為( )
A. B. 2 C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分分)
如圖,在中,
,
,
,將
繞點
按逆時針方向旋轉(zhuǎn)至
,
點的坐標(biāo)為
.
()求
點的坐標(biāo).
()求過
,
,
三點的拋物線
的解析式.
()在(
)中的拋物線上是否存在點
,使以
,
,
為頂點的三角形是等腰直角三角形?若
存在,求出所有點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,B為OM上一點,BA⊥ON于A,四邊形ABCD為正方形,P為射線BM上一動點,連結(jié)CP,將CP繞點C順時針方向旋轉(zhuǎn)90°得CE,連結(jié)BE,若AB=4,則BE的最小值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com