日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,已如直線,且、分別交于A、B兩點,、分別交于C、D兩點,記∠ACP=1,∠BDP=2,∠CPD=3,點P在線段AB.

          (1)若∠1=25°,∠2=33°,則∠3=__________;

          (2)猜想∠1,∠2,∠3之間的相等關(guān)系,并說明理由;

          (3)如圖2,點在點B的南偏東23°方向,在點C的西南方向,利用(2)的結(jié)論,可知∠BAC=__________;

          (4)P在直線上且在A、B兩點外側(cè)運動時,其它條件不變,請直接寫出∠1,∠2,∠3之間的相等關(guān)系.

          【答案】(1)58°;(2)1+2=3,理由見解析;(3)68°;(4)當(dāng)點P直線上且在上方運動時,∠1+3=2 ,當(dāng)點P直線上且在上方運動時,∠2+3=1

          【解析】

          1)根據(jù)平行線的性質(zhì)和三角形內(nèi)角和定理即可求解;(2)∠1+2=3,作PQ,可得PQ,由平行線的性質(zhì)可得∠1=CPQ,∠2=DPQ,即可得∠CPD=CPQ+DPQ=1+2;(3)過A點作AFBE,則AFBECD,即可得∠BAC=EBA+ACD=23°+45°=68°;(4)分當(dāng)點P在直線上且在上方運動時和點P在直線上且在的下方運動時兩種情況,類比(2)的方法求解即可.

          1)∵l1l2,
          ∴∠1+PCD+PDC+2=180°,

          在△PCD中,∠3+PCD+PDC=180°,

          ∴∠3=1+2=58°,

          故答案為:58°;

          (2)1+2=3

          理由如下:

          PQ

          ,所以PQ(平行公理的推論)

          ∴∠1=CPQ,∠2=DPQ(兩直線平行,內(nèi)錯角相等).

          又∵∠CPD=CPQ+DPQ,

          ∴∠1+2=CPD(等量代換)

          (3) A點作AFBE,則AFBECD

          則∠BAC=EBA+ACD=23°+45°=68°;

          故答案為:68°;

          (4)當(dāng)點P在直線上且在上方運動時,∠1+3=2

          如圖,過PPFl1,交l4F

          ∴∠1=FPC

          l1l2,

          PFl2,

          ∴∠2=FPD.

          ∵∠FPD = FPC + CPD,

          ∴∠2=3+1

          當(dāng)點P在直線上且在的下方運動時,∠2+3=1,

          PPGl2,交l4G
          ∴∠2=GPC,

          l1l2,

          PGl1,

          ∴∠1=DPG,

          ∵∠CPD+CPG=GPD,

          ∴∠1=2+3

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形ABCD中,AB=4,AD=3,把矩形沿直線AC折疊,使點B落在點E處,AECD于點F,連接DE

          1)求證:△DEC≌△EDA;

          2)求DF的值;

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列四個函數(shù):

          ①y=kx(k為常數(shù),k>0)

          ②y=kx+b(k,b為常數(shù),k>0)

          ③y=(k為常數(shù),k>0,x>0)

          ④y=ax2(a為常數(shù),a>0)

          其中,函數(shù)y的值隨著x值得增大而減少的是( 。

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,在直角坐標(biāo)平面中,點軸的負(fù)半軸上,直線經(jīng)過點,與軸相交于點,點是點關(guān)于原點的對稱點,過點的直線軸,交直線于點,如果

          1)求直線的表達(dá)式;

          2)如果點在直線上,且是等腰三角形,請求出點的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,已知ABBCCA4cm,ADBCD,點PQ分別從B、C兩點同時出發(fā),其中點P沿BC向終點C運動,速度為1cm/s;點Q沿CA、AB向終點B運動,速度為2cm/s,設(shè)它們運動的時間為x(s).

          (1)x為何值時,PQAC;

          (2)設(shè)△PQD的面積為,當(dāng)0x2時,求yx的函數(shù)關(guān)系式;

          (3)當(dāng)0x2時,求證:AD平分△PQD的面積;

          (4)探索以PQ為直徑的圓與AC的位置關(guān)系,請寫出相應(yīng)位置關(guān)系的x的取值范圍(不要求寫出過程).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知ABCD不添加任何字母和數(shù)字,請你再添加一個條件∠1=2成立(要求給出三個答案),并選擇其中一種情況加以證明.

          條件1________________________________;

          條件2________________________________;

          條件3________________________________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】先化簡,再求值,其中的值從不等式組的整數(shù)解中選取.

          【答案】(a-2)2.

          【解析】試題分析:根據(jù)分式的減法和除法可以化簡題目中的式子,然后在不等式組的解集中選取一個使得原分式有意義的整數(shù)值代入化簡后的式子即可解答本題.

          試題解析:

          解:原式

          =(a-2)2,

          由不等式組得,0≤a5.5,

          ∴當(dāng)a=1時,原式=(1-2)2=1.

          點睛:本題考查分式的化簡求值、一元一次不等式組的整數(shù)解,解答本題的關(guān)鍵是明確分式化簡求值的方法,會求一元一次不等式組的解集.

          型】解答
          結(jié)束】
          22

          【題目】某校為了開展讀書月活動,對學(xué)生最喜歡的圖書種類進(jìn)行了一次抽樣調(diào)查,所有圖書分成四類:藝術(shù)、文學(xué)、科普、其他.隨機(jī)調(diào)查了該校m名學(xué)生(每名學(xué)生必選且只能選擇一類圖書)并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計圖:

          根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

          (1)m ,n ;

          (2)扇形統(tǒng)計圖中,“藝術(shù)”所對應(yīng)的扇形的圓心角度數(shù)是 度;

          (3)請根據(jù)以上信息補全條形統(tǒng)計圖;

          (4)根據(jù)抽樣調(diào)查的結(jié)果,請你估計該校1000名學(xué)生中有多少學(xué)生最喜歡科普類圖書.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】用圖1中四個完全一樣的直角三角形可以拼成圖2的大正方形。

          解答下列問題:

          1)請用含、、的代數(shù)式表示大正方形的面積.

          方法1 ;方法2 .

          2)根據(jù)圖2,利用圖形的面積關(guān)系,推導(dǎo)、之間滿足的關(guān)系式.

          3)利用(2)的關(guān)系式解答:如果大正方形的面積是25,且,求小正方形的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,P為正方形ABCD的邊BC上一動點(PB、C不重合),連接AP,過點BBQAPCD于點Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′BA的延長線于點M

          (1)試探究APBQ的數(shù)量關(guān)系,并證明你的結(jié)論;

          (2)當(dāng)AB=3BP=2PC,求QM的長;

          (3)當(dāng)BP=m,PC=n時,求AM的長.

          查看答案和解析>>

          同步練習(xí)冊答案