日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】我們定義:對角線互相垂直的四邊形叫做垂美四邊形.

          1)如圖1,垂美四邊形ABCD的對角線AC,BD交于O.求證:AB2+CD2AD2+BC2;

          2)如圖2,分別以RtACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連結(jié)BE,CG,GE

          ①求證:四邊形BCGE是垂美四邊形;

          ②若AC4AB5,求GE的長.

          【答案】1)見解析;(2)①見解析;②GE

          【解析】

          1)由垂美四邊形得出AC⊥BD,則∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,即可得出結(jié)論;
          2連接BG、CE相交于點N,CEAB于點M,由正方形的性質(zhì)得出AG=AC,AB=AE∠CAG=∠BAE=90°,易求∠GAB=∠CAE,由SAS證得△GAB≌△CAE,得出∠ABG=∠AEC,由∠AEC+∠AME=90°,得出∠ABG+∠AME=90°,推出∠ABG+∠BMN=90°,即CE⊥BG,即可得出結(jié)論;
          垂美四邊形得出CG2+BE2=CB2+GE2,由勾股定理得出BC==3,由正方形的性質(zhì)得出CG=4 ,BE=5,則GE2=CG2+BE2-CB2=73,即可得出結(jié)果.

          1)證明:∵垂美四邊形ABCD的對角線AC,BD交于O,

          ACBD,

          ∴∠AOD=∠AOB=∠BOC=∠COD90°

          由勾股定理得:AD2+BC2AO2+DO2+BO2+CO2,

          AB2+CD2AO2+BO2+CO2+DO2,

          AD2+BC2AB2+CD2;

          2)①證明:連接BG、CE相交于點N,CEAB于點M,如圖2所示:

          ∵正方形ACFG和正方形ABDE,

          AGAC,ABAE,∠CAG=∠BAE90°,

          ∴∠CAG+BAC=∠BAE+BAC,即∠GAB=∠CAE,

          GABCAE中,

          ∴△GAB≌△CAESAS),

          ∴∠ABG=∠AEC,

          ∵∠AEC+AME90°,

          ∴∠ABG+AME90°,

          ∴∠ABG+BMN90°,即CEBG,

          ∴四邊形BCGE是垂美四邊形;

          ②解:∵四邊形BCGE是垂美四邊形,

          ∴由(1)得:CG2+BE2CB2+GE2,

          AC4AB5,

          BC3

          ∵正方形ACFG和正方形ABDE,

          CGAC4,BEAB5,

          GE2CG2+BE2CB2=(42+523273

          GE

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】已知二次函數(shù)的圖象與x軸的兩個交點A,B關(guān)于直線x=﹣1對稱,且AB=6,頂點在函數(shù)y=2x的圖象上,則這個二次函數(shù)的表達式為________。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】甲、乙兩位同學做拋骰子(均勻正方體形狀)實驗,他們共拋了60次,出現(xiàn)向上點數(shù)的次數(shù)如表:

          向上點數(shù)

          1

          2

          3

          4

          5

          6

          出現(xiàn)次數(shù)

          8

          10

          7

          9

          16

          10

          (1)計算出現(xiàn)向上點數(shù)為6的頻率.

          (2)丙說:如果拋600次,那么出現(xiàn)向上點數(shù)為6的次數(shù)一定是100次.請判斷丙的說法是否正確并說明理由.

          (3)如果甲乙兩同學各拋一枚骰子,求出現(xiàn)向上點數(shù)之和為3的倍數(shù)的概率.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在ABC中,∠A70°.按下列步驟作圖:①分別以點B,C為圓心,適當長為半徑畫弧,分別交BA,BC,CACB于點D,EF,G;②分別以點D,E為圓心,大于DE為半徑畫弧,兩弧交于點M;③分別以點FG為圓心,大于FG為半徑畫弧,兩弧交于點N;④作射線BM交射線CN于點O.則∠BOC的度數(shù)是_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知x、y是實數(shù)且滿足x2+xy+y2﹣2=0,設(shè)M=x2﹣xy+y2,則M的取值范圍是_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點E在邊AD上(不與點A、D重合),∠CEB=45°,EB與對角線AC相交于點F,設(shè)DE=x.

          (1)用含x的代數(shù)式表示線段CF的長;

          (2)如果把CAE的周長記作CCAE,BAF的周長記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

          (3)當∠ABE的正切值是時,求AB的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在反比例函數(shù)y=﹣的圖象上有一點A,連接AO并延長交圖象的另一支于點B,在第一象限內(nèi)有一點C,滿足AC=BC,當點A運動時,點C始終在函數(shù)y=的圖象上運動,若tanCAB=3,則k=_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,一次函數(shù)ykx+b的圖象經(jīng)過點A0,1),且與直線y2x5相交于點P,點P的橫坐標為2,直線y2x5y軸交于點B

          1)求kb的值;

          2)求△ABP的面積;

          3)根據(jù)圖象可得,關(guān)于x的不等式2x5kx+b的解集是   

          4)若點Qx軸上,且滿足SABQSABP,則點Q的坐標是   

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖,有下列6個結(jié)論:

          abc<0;

          bac;

          4a+2b+c>0;

          2c<3b;

          a+bmam+b),(m≠1的實數(shù))

          2a+b+c>0,其中正確的結(jié)論的有_____

          查看答案和解析>>

          同步練習冊答案