日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的直角坐標(biāo)系,設(shè)P、Q分別為AB、OB邊上的動(dòng)點(diǎn),他們同時(shí)分別從點(diǎn)A、O向B點(diǎn)勻速移動(dòng),移動(dòng)的速度都是1厘米/秒,設(shè)P、Q移動(dòng)時(shí)間為t秒(0≤t≤4)
          (1)試用t的代數(shù)式表示P點(diǎn)的坐標(biāo);
          (2)求△OPQ的面積S(cm2)與t(秒)的函數(shù)關(guān)系式;當(dāng)t為何值時(shí),S有最大值,并求出S的最大值;
          (3)試問(wèn)是否存在這樣的時(shí)刻t,使△OPQ為直角三角形?如果存在,求出t的值,如果不存在,請(qǐng)說(shuō)明理由.

          【答案】分析:(1)作PM⊥OA于M,則PM∥OB,再根據(jù)平行線分線段成比例定理列出比例式;由勾股定理求出AB=5,而AP=t,根據(jù)比例式求出AM、PM的值,P點(diǎn)坐標(biāo)即可得到;
          (2)根據(jù)三角形的面積公式,P點(diǎn)縱坐標(biāo)與OQ的長(zhǎng)度的積的一半就是△OPQ面積,整理后根據(jù)二次函數(shù)的最值問(wèn)題求解即可;
          (3)作OQ邊上的高,根據(jù)△PON和△QPN相似,相似三角形對(duì)應(yīng)邊成比例,列式求解.
          解答:解:(1)作PM⊥OA于M,則PM∥OB,
          ∴AM:AO=PM:BO=AP:AB,
          ∵OA=3cm,OB=4cm,
          ∴在Rt△OAB中,AB===5cm,
          ∵AP=1•t=t,

          ∴PM=t,AM=t,
          ∴OM=OA-AM=3-t,
          ∴點(diǎn)P的坐標(biāo)為( t,3-t);

          (2)∵OQ=1•t=tcm,
          ∴S△OPQ=×t×(3-t)=-t2+t=-(t-2+
          ∴當(dāng)t=s時(shí),S有最大值,最大值為 cm2;

          (3)存在.
          理由:作PN⊥OB于N,
          ∵△OPQ為直角三角形,
          ∴△PON∽△QPN,

          ∴(3-t)2=t(t-t),
          解得t1=3,t2=15(舍去);
          ∴當(dāng)t=3s時(shí),△OPQ為直角三角形.
          點(diǎn)評(píng):此題考查了勾股定理,平行線分線段成比例定理,二次函數(shù)最值問(wèn)題以及相似三角形的判定與性質(zhì)等知識(shí).此題綜合性很強(qiáng),難度較大,解題的關(guān)鍵是數(shù)形結(jié)合思想與函數(shù)思想的應(yīng)用,注意輔助線的作法.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•黑河)如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊OA、OB分別在y軸和x軸上,并且OA、OB的長(zhǎng)分別是方程x2-7x+12=0的兩根(OA<OB),動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始在線段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)0運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t秒.
          (1)求A、B兩點(diǎn)的坐標(biāo).
          (2)求當(dāng)t為何值時(shí),△APQ與△AOB相似,并直接寫出此時(shí)點(diǎn)Q的坐標(biāo).
          (3)當(dāng)t=2時(shí),在坐標(biāo)平面內(nèi),是否存在點(diǎn)M,使以A、P、Q、M為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知Rt△AOB在平面直角坐標(biāo)系中,∠AOB=90°,∠BAO=30°,且A的坐標(biāo)為(3,0),⊙C的圓心坐標(biāo)為(-1,0),半徑為1,若D是⊙C上的一個(gè)動(dòng)點(diǎn),線段DA與y軸交與點(diǎn)E.求:
          (1)過(guò)點(diǎn)A、B、C的二次函數(shù)關(guān)系式;
          (2)求△ABE面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的直角坐標(biāo)系,設(shè)P、Q分別為AB、OB邊上的動(dòng)點(diǎn),他們同時(shí)分別從點(diǎn)A、O向B點(diǎn)勻速移動(dòng),移動(dòng)的速度都是1厘米/秒,設(shè)P、Q移動(dòng)時(shí)間為精英家教網(wǎng)t秒(0≤t≤4)
          (1)試用t的代數(shù)式表示P點(diǎn)的坐標(biāo);
          (2)求△OPQ的面積S(cm2)與t(秒)的函數(shù)關(guān)系式;當(dāng)t為何值時(shí),S有最大值,并求出S的最大值;
          (3)試問(wèn)是否存在這樣的時(shí)刻t,使△OPQ為直角三角形?如果存在,求出t的值,如果不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          已知Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的直角坐標(biāo)系,設(shè)P、Q分別為AB、OB邊上的動(dòng)點(diǎn),他們同時(shí)分別從點(diǎn)A、O向B點(diǎn)勻速移動(dòng),移動(dòng)的速度都是1厘米/秒,設(shè)P、Q移動(dòng)時(shí)間為t秒(0≤t≤4)
          (1)試用t的代數(shù)式表示P點(diǎn)的坐標(biāo);
          (2)求△OPQ的面積S(cm2)與t(秒)的函數(shù)關(guān)系式;當(dāng)t為何值時(shí),S有最大值,并求出S的最大值;
          (3)試問(wèn)是否存在這樣的時(shí)刻t,使△OPQ為直角三角形?如果存在,求出t的值,如果不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案