日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 附加題:已知二次函數(shù)y=ax2+bx+c的圖象G和x軸有且只有一個交點A,與y軸的交點為B(0,4),且ac=b.
          (1)求該二次函數(shù)的解析表達式;
          (2)將一次函數(shù)y=-3x的圖象作適當平移,使它經(jīng)過點A,記所得的圖象為L,圖象L與G的另一個交點為C,求△ABC的面積.
          (1)由B(0,4)得,c=4.
          G與x軸的交點A(-
          b
          2a
          ,0),
          由條件ac=b,得-
          b
          2a
          =-
          c
          2
          =-2
          ,
          即A(-2,0).
          所以
          b=4a
          4a-2b+4=0

          解得
          a=1
          b=4

          所求二次函數(shù)的解析式為y=x2+4x+4.

          (2)設圖象L的函數(shù)解析式為y=-3x+b,
          因圖象L過點A(-2,0),
          所以b=-6,
          即平移后所得一次函數(shù)的解析式為
          y=-3x-6.
          令-3x-6=x2+4x+4,
          解得x1=-2,x2=-5.
          將它們分別代入y=-3x-6,
          得y1=0,y2=9.
          所以圖象L與G的另一個交點為C(-5,9).
          如圖,過C作CD⊥x軸于D,
          則S△ABC=S梯形BCDO-S△ACD-S△ABO
          =
          1
          2
          (4+9)×5-
          1
          2
          ×3×9-
          1
          2
          ×2×4=15.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,在直角坐標系xOy中,二次函數(shù)y=-
          2
          3
          x2+bx+5
          的圖象與x軸、y軸的公共點分別為A(5、0)、B,點C在這個二次函數(shù)的圖象上,且橫坐標為3.
          (1)求這個二次函數(shù)的解析式;
          (2)求∠BAC的正切值;
          (3)如果點D在這個二次函數(shù)的圖象上,且∠DAC=45°,求點D的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          拋物線y=ax2+bx+c(a≠0)交x軸于A、B兩點,交y軸于點C,已知拋物線的對稱軸為直線x=-1,其中B(1,0),C(0,-3).
          (Ⅰ)求二次函數(shù)y=ax2+bx+c(a≠0)的解析式;
          (Ⅱ)設拋物線的頂點為D,求△ABD的面積;
          (Ⅲ)求使y≥-3的x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,拋物線y=ax2+bx(a>0)與雙曲線y=
          k
          x
          相交于點A,B.已知點B的坐標為(-2,-2),點A在第一象限內(nèi),且tan∠AOx=4.過點A作直線ACx軸,交拋物線于另一點C.
          (1)求雙曲線和拋物線的解析式;
          (2)計算△ABC的面積;
          (3)在拋物線上是否存在點D,使△ABD的面積等于△ABC的面積?若存在,請你寫出點D的坐標;若不存在,請你說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A(-2,0),B(1,0),交y軸于C(0,-2),過B、C畫直線.
          (1)求二次函數(shù)的解析式;
          (2)點P在x軸負半軸上,且PB=PC,求OP的長;
          (3)點M在二次函數(shù)圖象上,過M向直線BC作垂線,垂足為H.若M在y軸左側(cè),且△CHM△BOC,求點M的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          衢江區(qū)某蔬菜基地種植西紅柿,由歷年市場行情得知,從2月1日起的300天內(nèi),西紅柿市場售價 w1與上市時間t的關系用圖甲的一條折線表示;西紅柿的種植成本 w2與上市時間t的關系用圖乙表示的拋物線段表示.
          (1)求出圖甲表示的市場售價 w1與時間t的函數(shù)關系式;
          (2)求出圖乙表示的種植成本 w2與時間t的函數(shù)關系式;
          (3)市場售價減去種植成本為純收益,當0<t≤200時,何時上市西紅柿純收益最大?(售價與成本單位:元/百千克,時間單位:天)

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,在△ABC中,AB=AC,點D在BC上,DEAC,交AB與點E,點F在AC上,DC=DF,若BC=3,EB=4,CD=x,CF=y,求y與x的函數(shù)關系式,并寫出自變量x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          取一張矩形的紙進行折疊,具體操作過程如下:
          第一步:先把矩形ABCD對折,折痕為MN,如圖(1)所示;
          第二步:再把B點疊在折痕線MN上,折痕為AE,點B在MN上的對應點為B′,得Rt△AB′E,如圖(2)所示;
          第三步:沿EB′線折疊得折痕EF,如圖(3)所示;利用展開圖(4)所示.

          探究:
          (1)△AEF是什么三角形?證明你的結(jié)論.
          (2)對于任一矩形,按照上述方法是否都能折出這種三角形?請說明理由.
          (3)如圖(5),將矩形紙片ABCD沿EF折疊,使點A落在DC邊上的點A′處,x軸垂直平分DA,直線EF的表達式為y=kx-k (k<0)
          ①問:EF與拋物線y=-
          1
          8
          x2
          有幾個公共點?
          ②當EF與拋物線只有一個公共點時,設A′(x,y),求
          x
          y
          的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,已知正方形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,拋物線y=-
          2
          3
          x2+bx+c經(jīng)過點A,B,交正x軸于點D,E是OC上的動點(不與C重合)連接EB,過B點作BF⊥BE交y軸與F
          (1)求b,c的值及D點的坐標;
          (2)求點E在OC上運動時,四邊形OEBF的面積有怎樣的規(guī)律性?并證明你的結(jié)論;
          (3)連接EF,BD,設OE=m,△BEF與△BED的面積之差為S,問:當m為何值時S最小,并求出這個最小值.

          查看答案和解析>>

          同步練習冊答案