日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,D為△ABC內(nèi)一點(diǎn),∠CAD=∠CBD=15°,E為AD延長(zhǎng)線上的一點(diǎn),且CE=AC.

          (1)求∠CDE的度數(shù);

          (2)若點(diǎn)M在DE上,且DC=DM,求證:ME=BD.

          【答案】(1)60°(2)證明見(jiàn)解析

          【解析】

          (1)證明ACD≌△BCD即可解題;(2)連接CM,先證明CM=CD,即可證明BCD≌△ECM,即可解題.

          (1)AC=BC,CAD=CBD,

          ∴∠DAB=DBA,

          AD=BD,

          ACDBCD中,

          ,

          ∴△ACD≌△BCD(SAS),

          ∴∠ACD=BCD=45°,

          ∴∠CDE=CAD+ACD=60°;

          (2)連接CM,

          DC=DM,CDE=60°,

          ∴△DMC為等邊三角形,

          ∴∠MCE=45°,

          CM=CD,

          BCDECM中,

          ,

          ∴△BCD≌△ECM(SAS),

          ME=BD.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°后得CF,連接EF.
          (1)補(bǔ)充完成圖形;
          (2)若EF∥CD,求證:∠BDC=90°.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,在菱形ABCD中,∠A=60°,AB=2,E,F(xiàn)兩點(diǎn)分別從A,B兩點(diǎn)同時(shí)出發(fā),以相同的速度分別向終點(diǎn)B,C移動(dòng),連接EF,在移動(dòng)的過(guò)程中,EF的最小值為( 。

          A. 1 B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在矩形ABCD中,AB=4,BC=6,點(diǎn)E為BC的中點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在矩形內(nèi)點(diǎn)F處,連接CF,則CF的長(zhǎng)為(
          A.1.8
          B.2.4
          C.3.2
          D.3.6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,在△ABC中,AB=AC,BD,CE是角平分線,圖中的等腰三角形共有( )

          A. 6個(gè) B. 5個(gè) C. 4個(gè) D. 3個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平行四邊形ABCD中,點(diǎn)E在AD邊上,連接BE、CE,EB平分∠AEC
          (1)如圖1,判斷△BCE的形狀,并說(shuō)明理由;
          (2)如圖2,若∠A=90°,BC=5,AE=1,求線段BE的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在△ABC中,AB=6,AC=BC=5,將△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α(0°<α<180°),點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)E,連接BD,BE.

          (1)如圖,當(dāng)α=60°時(shí),延長(zhǎng)BE交AD于點(diǎn)F.
          ①求證:△ABD是等邊三角形;
          ②求證:BF⊥AD,AF=DF;
          ③請(qǐng)直接寫(xiě)出BE的長(zhǎng);
          (2)在旋轉(zhuǎn)過(guò)程中,過(guò)點(diǎn)D作DG垂直于直線AB,垂足為點(diǎn)G,連接CE,當(dāng)∠DAG=∠ACB,且線段DG與線段AE無(wú)公共點(diǎn)時(shí),請(qǐng)直接寫(xiě)出BE+CE的值.
          溫馨提示:考生可以根據(jù)題意,在備用圖中補(bǔ)充圖形,以便作答.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在△ABC中,AB=BC,∠ABC=90°.以AB為斜邊作等腰直角三角形ADB.點(diǎn)P是直線DB上一個(gè)動(dòng)點(diǎn),連接AP,作PE⊥AP交BC所在的直線于點(diǎn)E.

          (1)如圖1,點(diǎn)P在BD的延長(zhǎng)線上,PE⊥EC,AD=1,直接寫(xiě)出PE的長(zhǎng);
          (2)點(diǎn)P在線段BD上(不與B,D重合),依題意,將圖2補(bǔ)全,求證:PA=PE;
          (3)點(diǎn)P在DB的延長(zhǎng)線上,依題意,將圖3補(bǔ)全,并判斷PA=PE是否仍然成立.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,A(a,0),D(6,4),將線段AD平移得到BC,使B(0,b),且a,b滿(mǎn)足|a﹣2|+=0,延長(zhǎng)BCx軸于點(diǎn)E.

          (1)填空:點(diǎn)A(   ,   ),點(diǎn)B(      ),∠DAE=   

          (2)求點(diǎn)C和點(diǎn)E的坐標(biāo);

          (3)設(shè)點(diǎn)Px軸上的一動(dòng)點(diǎn)(不與點(diǎn)A、E重合),且PA>AE,探究∠APC∠PCB的數(shù)量關(guān)系?寫(xiě)出你的結(jié)論并證明.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案