【題目】如圖,在平面直角坐標(biāo)系網(wǎng)格中,△ABC的頂點(diǎn)都在格點(diǎn)上,點(diǎn)C坐標(biāo)(0,-1).
作出△ABC 關(guān)于原點(diǎn)對(duì)稱(chēng)的△A1B1C1,并寫(xiě)出點(diǎn)A1的坐標(biāo);
把△ABC 繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,得△A2B2C2,畫(huà)出△A2B2C2,并寫(xiě)出點(diǎn)A2的坐標(biāo);
(3)直接寫(xiě)出△A2B2C2的面積
【答案】(1)作圖見(jiàn)解析,點(diǎn)A1(1,﹣2);(2)作圖見(jiàn)解析,點(diǎn)A2(﹣3,﹣2);(3).
【解析】試題分析:(1)原點(diǎn)對(duì)稱(chēng),橫縱坐標(biāo)都變?yōu)樵鴺?biāo)的相反數(shù).(2)作AC,BC垂線(xiàn),并且長(zhǎng)度和AC,BC相等,可得到A2,B2坐標(biāo).(3)利用正方形面積減去三個(gè)直角三角形面積.
試題解析:
(1)如圖所示:點(diǎn)A1的坐標(biāo)為:(1,﹣2);
(2)如圖所示:點(diǎn)A2的坐標(biāo)為:(﹣3,﹣2);
(3)△A2B2C2的面積=3×3﹣×1×3﹣
×2×1﹣
×3×2=
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABE中,∠B=60°,AB=8,C、D分別是△ABE的邊AE延長(zhǎng)線(xiàn)上和邊BE延長(zhǎng)線(xiàn)上兩點(diǎn),連接CD,∠A-∠C=60°,AB=CD,DE=6,則線(xiàn)段AC的長(zhǎng)度等于______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠計(jì)劃生產(chǎn)兩種產(chǎn)品共60件,需購(gòu)買(mǎi)甲、乙兩種材料.生產(chǎn)一件
產(chǎn)品需甲種材料4千克;生產(chǎn)一件
產(chǎn)品需甲、乙兩種材料各3千克.經(jīng)測(cè)算,購(gòu)買(mǎi)甲、乙兩種材料各1千克共需資金60元;購(gòu)買(mǎi)甲種材料2千克和乙種材料3千克共需資金155元.
(1)甲、乙兩種材料每千克分別是多少元?
(2)現(xiàn)工廠用于購(gòu)買(mǎi)甲、乙兩種材料的資金不超過(guò)9900元,且生產(chǎn)產(chǎn)品不少于38件,問(wèn)符合生產(chǎn)條件的生產(chǎn)方案有哪幾種?
(3)在(2)的條件下,若生產(chǎn)一件產(chǎn)品需加工費(fèi)40元,生產(chǎn)一件
產(chǎn)品需加工費(fèi)50元,應(yīng)選擇哪種生產(chǎn)方案,使生產(chǎn)這60件產(chǎn)品的成本最低(成本=材料費(fèi)+加工費(fèi))?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某市對(duì)位于筆直公路AC上兩個(gè)小區(qū)A,B的供水路線(xiàn)進(jìn)行優(yōu)化改造,供水站M在筆直公路AD上,測(cè)得供水站M在小區(qū)A的南偏東60°方向,在小區(qū)B的西南方向,小區(qū)A,B之間的距離為300(+1)米,求供水站M分別到小區(qū)A,B的距離.(結(jié)果可保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在A,B兩地間有一車(chē)站C,一輛汽車(chē)從A地出發(fā)經(jīng)C站勻速駛往B地
如圖
是汽車(chē)行駛時(shí)離C站的路程
千米
與行駛時(shí)間
小時(shí)
之間的函數(shù)關(guān)系的圖象.
填空:
______km,AB兩地的距離為______km;
求線(xiàn)段PM、MN所表示的y與x之間的函數(shù)表達(dá)式;
求行駛時(shí)間x在什么范圍時(shí),小汽車(chē)離車(chē)站C的路程不超過(guò)60千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD的對(duì)角線(xiàn)BD上一點(diǎn),PE⊥BC,PF⊥CD,垂足分別為點(diǎn)E,F(xiàn),連接AP,EF,給出下列四個(gè)結(jié)論:
①AP=EF;②∠PFE=∠BAP;③PD=EC;④△APD一定是等腰三角形.
其中正確的結(jié)論有( ).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用指定方法解下列方程 (1) 2x2 +5x-2=0(用配方法);(2) 9x2-(x-1)2=0(用因式分解法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC與△A′B′C′在平面直角坐標(biāo)系中的位置如圖所示.
(1)分別寫(xiě)出下列各點(diǎn)的坐標(biāo):A′________;B′________;C′________;
(2)說(shuō)明△A′B′C′由△ABC經(jīng)過(guò)怎樣的平移得到;
(3)若點(diǎn)P(a,b)是△ABC內(nèi)部一點(diǎn),則平移后△A′B′C′內(nèi)的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為________;
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)的函數(shù)表達(dá)式為
,與
軸交點(diǎn)為
,與
軸交點(diǎn)為
.
(1)求兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)為線(xiàn)段
上的一個(gè)動(dòng)點(diǎn),
為坐標(biāo)原點(diǎn),是否存在點(diǎn)
,使
的值最小?若存在,求出
的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com