日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,在RtABC中,∠ACB90°,AC3,BC4,動點P在線段BC上,點Q在線段AB上,且PQBQ,延長QP交射線AC于點D

          1)求證:QAQD;

          2)設∠BAPα,當2tanα是正整數(shù)時,求PC的長;

          3)作點Q關于AC的對稱點Q′,連結QQ′,AQ′,DQ′,延長BC交線段DQ′于點E,連結AEQQ′分別與AP,AE交于點M,N(如圖2所示).若存在常數(shù)k,滿足kMNPEQQ′,求k的值.

          【答案】(1)證明見解析(2)PC的長為38

          【解析】

          1)由等腰三角形的性質得出∠B=∠BPQ=∠CPD,由直角三角形的性質得出∠BAC=∠D,即可得出結論;

          2)過點PPHABH,設PH3xBH4x,BP5x,由題意知tanα1,當tanα1時,HAPH3x,與勾股定理得出3x+4x5,解得x,即可求出PC長;

          tanα時,HA2PH6x,得出6x+4x5,解得x,即可求出PC長;

          3)設QQAD交于點O,由軸對稱的性質得出AQAQDQDQ,得出四邊形AQDQ是菱形,由菱形的性質得出QQAD,AOAD,證出四邊形BEQ'Q是平行四邊形,得出QQBE,設CD3m,則PC4m,AD3+3m,即QQBE4m+4,PE8m,由三角函數(shù)得出tanPAC,即可得出結果.

          1)證明:∵PQBQ,

          ∴∠B=∠BPQ=∠CPD,

          ∵∠ACB=∠PCD90°,

          ∴∠A+BAC90°,∠D+CPD90°,

          ∴∠BAC=∠D,

          QAQD;

          2)解:過點PPHABH,如圖1所示:

          PH3x,BH4xBP5x,

          由題意得:tanBAC,∠BAP<∠BAC,

          2tanα是正整數(shù)時,tanα1,

          tanα1時,HAPH3x,

          3x+4x5

          x,

          PC45x;

          tanα時,HA2PH6x,

          6x+4x5,

          x

          PC45x;

          綜上所述,PC的長為;

          3)解:設QQ′AD交于點O,如圖2所示:

          由軸對稱的性質得:AQ′AQDQDQ′,

          ∴四邊形AQDQ′是菱形,

          QQ′AD,AOAD,

          BCAC,

          QQ′BE

          BQEQ′,

          ∴四邊形BEQ'Q是平行四邊形,

          QQ′BE,

          CD3m,則PC4m,AD3+3m,

          QQ′BE4m+4,PE8m,

          tanPAC,

          ,

          MN2MO4m1+m),

          k8

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知點、在直線上,且,點,且,以為直徑在的左側作半圓,,且.

          1)若半圓上有一點,則的最大值為________;

          2)向右沿直線平移得到;

          ①如圖,若截半圓的長為,求的度數(shù);

          ②當半圓的邊相切時,求平移距離.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某校對初三學生進行物理、化學實驗操作能力測試.物理、化學各有3個不同的操作實驗題目,物理實驗分別用①、、③表示,化學實驗分別用ab、c表示.測試時每名學生每科只操作一個實驗,實驗的題目由學生抽簽確定,第一次抽簽確定物理實驗題目,第二次抽簽確定化學實驗題目.王剛同學對物理的①、②號實驗和化學的b、c號實驗準備得較好.請用畫樹狀圖(或列表)的方法,求王剛同學同時抽到兩科都準備得較好的實驗題目的概率.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,⊙O為等腰ABC的外接圓,直徑AB=12P上任意一點(不與B,C重合),直線CPAB延長線于點Q,⊙O在點P處切線PDBQ于點D,下列結論:①若∠PAB=30°,則的長為π;②若PDBC,則AP平分∠CAB;③若PB=BD,則PD=6;④無論點P上的位置如何變化,CPCQ為定值.其中正確的是________________.(寫出所有正確結論的序號)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,兩個完全相同的直角三角板放置在平面直角坐標系中,點A,B分別在x軸、y軸上,點C在邊AB上,延長DCy軸于點E.若點D的橫坐標為5,∠OBA30°,二次函數(shù)yax2+bx+c的圖象經過點AD,E,則a的值為_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知:如圖,△ABC內接于⊙O,AB為直徑,∠CBA的平分線交AC于點F,交⊙O于點D,DE⊥AB于點E,且交AC于點P,連結AD

          1)求證:∠DAC=∠DBA

          2)求證:P是線段AF的中點;

          3)連接CD,若CD﹦3,BD﹦4,求⊙O的半徑和DE的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在中,,點D邊上,且,將沿直線翻折得到,點B的對應點為E,與邊交于點F,則的長為_____________.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知二次函數(shù)yax2+bx+ca≠0)的圖象如圖,則下列4個結論:①abc0;②2a+b0;③4a+2b+c0;④b24ac0;其中正確的結論的個數(shù)是( 。

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知,直線經過點,作,垂足為,連接.

          (感知)如圖①,點、同側,且點右側,在射線上截取,連接,可證,從而得出, ,進而得出 度.

          (探究)如圖②,當點、異側時,(感知)得出的的大小是否改變?若不改變,給出證明;若改變,請求出的大小.

          (應用)在直線繞點旋轉的過程中,當 ,時,直接寫出的長.

          查看答案和解析>>

          同步練習冊答案