日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖:⊙O為△ABC的外接圓,∠C=60°,過C作⊙O的切線,交AB的延長(zhǎng)線于P,∠APC的平分線和AC、BC分別相交于D、E.
          (1)證明:△CDE是等邊三角形;
          (2)證明:PD•DE=PE•AD;
          (3)若PC=7,S△PCE=數(shù)學(xué)公式,求作以PE、DE的長(zhǎng)為根的一元二次方程;
          (4)試判斷E點(diǎn)是否能成為PD的中點(diǎn)?若能,請(qǐng)說明必需滿足的條件,同時(shí)給出證明;若不能,請(qǐng)說明理由.

          (1)證明:連接OC.∵PC是圓的切線.
          ∴∠PCO=90°.
          ∵∧ACB=60°,⊙O是△ABC的外接圓,
          ∴∠ACO=∠BCO=30°,
          ∴∠PCB=∠PCO-∠BCO=60°,
          ∴∠PCB=∠A=∠ACB=60°
          ∵∠CPD=∠APD
          ∴△CEP∽△ADP
          ∴∠CEP=∠ADP
          ∴∠CDE=∠CED
          ∴CD=CE
          ∵∠C=60°
          ∴△CDE是等邊三角形;

          (2)證明:由(1)可知:△CEP∽△ADP
          ∴PD•CE=PE•AD
          ∵△CDE是等邊三角形
          ∴CE=DE
          ∴PD•DE=PE•AD;

          (3)解:∵S△PCE=PE•DE•sin60°=•PE•DE=,
          ∴PE•DE=15,
          ∵∠PCB=∠PDC=60°,∠CPD=∠EPC,
          ∴△CPD∽△EPC,
          ∴PC2=PE•PD=PE(PE+DE)=PE2+PE•DE=PE2+15=49,
          ∴PE=,
          ∴DE=,
          PE+DE=
          ∴以PE,DE為根的一元二次方程應(yīng)該是x2-x+15=0,
          即:34x2-49x+510=0;

          (4)解:當(dāng)AC是圓的直徑時(shí),E是PD的中點(diǎn).
          證明:∵PC是圓的切線,AC是直徑
          ∴∠ACP=∠ABC=90°,∠PCE=∠A
          ∵∠ACB=∠DEC=60°
          ∴∠A=30°,∠PCE+∠EPC=60°
          ∵∠PCE=∠A
          ∴∠PCE=∠EPC=30°
          ∴CE=PE
          ∵△CDE是等邊三角形
          ∴CE=PE=DE
          即E是PD的中點(diǎn).
          分析:(1)本題可通過證明△CEP和△APD相似,得出∠CED和∠CDE的補(bǔ)角相等,然后根據(jù)∠DCE=60°得出三角形CDE是等邊三角形的結(jié)論;
          (2)本題實(shí)際上求的是△PEC和△PDA相似,由于(1)中已經(jīng)證得,那么可得出的線段的關(guān)系是PD•CE=PE•AD,由于三角形CDE是等邊三角形,因此將相等的邊置換后即可得出本題的結(jié)論;
          (3)本題要求的實(shí)際是PE+DE和PE•DE的值,根據(jù)△PCE的面積我們可以用PE•DE•sin60°÷2來(lái)表示,那么可得出PE•DE的值,通過△PCE和△PDC相似可得出PC2=PE(PE+DE)=PE2+PE•DE,而PC已知,那么可得出PE的值,也就求出了DE的值,可得出PE+DE的值,然后根據(jù)一元二次方程根與系數(shù)的關(guān)系即可得出所求的方程;
          (4)若E是PD中點(diǎn),那么PE=DE=CE,因此∠ECP=∠P=30°,那么∠ACP=90°,由于PC是圓的切線,因此AC應(yīng)該是圓的直徑.所以當(dāng)AC是圓的直徑時(shí),E是PD的中點(diǎn).
          點(diǎn)評(píng):本題主要考查了切線的性質(zhì),一元二次方程根與系數(shù)的關(guān)系以及圓周角定理等知識(shí)點(diǎn),通過得出的等邊三角形得出角和邊相等是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          24、如圖,AD為△ABC的角平分線,DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,連接EF交AD于點(diǎn)G.
          (1)求證:AD垂直平分EF;
          (2)若∠BAC=60°,猜測(cè)DG與AG間有何數(shù)量關(guān)系?請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          14、如圖,E為△ABC的重心,ED=3,則AD=
          9

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•井研縣模擬)如圖,D為△ABC的AB邊上的一點(diǎn),∠ABC=∠ACD,AD=2cm,AB=3cm,則AC=( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,D為△ABC的邊AB上一點(diǎn),且∠ABC=∠ACD,AD=3cm,AB=4cm,則AC的長(zhǎng)為(  )

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,DE為△ABC中AC邊的中垂線,BC=8,AB=10,則△EBC的周長(zhǎng)是(  )

          查看答案和解析>>

          同步練習(xí)冊(cè)答案