日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】中,,點,點上,連接,

          (1)如圖,若,,,求的度數(shù);

          (2),,直接寫出 (的式子表示)

          【答案】130°;(290°-

          【解析】

          1)根據(jù)三角形的內(nèi)角和定理即可求出∠B+∠C,然后根據(jù)等邊對等角可得∠BAE=BEA、∠CAD=CDA,從而求出∠BEA+∠CDA,再根據(jù)三角形的內(nèi)角和定理即可求出∠DAE

          2)根據(jù)三角形的內(nèi)角和定理即可求出∠B+∠C,然后根據(jù)等邊對等角可得∠BAE=BEA、∠CAD=CDA,從而求出∠BEA+∠CDA,再根據(jù)三角形的內(nèi)角和定理即可求出∠DAE

          解:(1)∵

          ∴∠B+∠C=180°-∠BAC=60°

          ,

          ∴∠BAE=BEA=180°-∠B

          CAD=CDA=180°-∠C

          ∴∠BEA+∠CDA=180°-∠B)+180°-∠C=[360°-(∠B+∠C]=150°

          =180°-(∠BEA+∠CDA=30°

          2)∵

          ∴∠B+∠C=180°-∠BAC=180°-

          ,

          ∴∠BAE=BEA=180°-∠B

          CAD=CDA=180°-∠C

          ∴∠BEA+∠CDA=180°-∠B)+180°-∠C=[360°-(∠B+∠C]= 90°+

          =180°-(∠BEA+∠CDA=90°-

          故答案為:90°-

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB是O的直徑,C是O外一點,AB=AC,連接BC,交O于點D,過點D作DEAC,垂足為E.

          (1)求證:DE與O相切.

          (2)B=30°,AB=4,則圖中陰影部分的面積是   (結(jié)果保留根號和π).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知ABC的三個頂點的坐標(biāo)分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

          (1)若ABC經(jīng)過平移后得到,已知點的坐標(biāo)為(4,0),寫出頂點,的坐標(biāo);

          (2)若ABC和關(guān)于原點O成中心對稱圖形,寫出的各頂點的坐標(biāo);

          (3)將ABC繞著點O按順時針方向旋轉(zhuǎn)90°得到,寫出的各頂點的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點A(﹣3,﹣3).

          (1)求正比例函數(shù)和反比例函數(shù)的表達(dá)式;

          (2)把直線OA向上平移后與反比例函數(shù)的圖象交于點B(﹣6,m),與x軸交于點C,求m的值和直線BC的表達(dá)式;

          (3)在(2)的條件下,直線BCy軸交于點D,求以點A,B,D為頂點的三角形的面積;

          (4)在(3)的條件下,點A,B,D在二次函數(shù)的圖象上,試判斷該二次函數(shù)在第三象限內(nèi)的圖象上是否存在一點E,使四邊形OECD的面積S1與四邊形OABD的面積S滿足:S1=S?若存在,求點E的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點的角平分線上一點,于點,點是線段上一點.已知,,點上一點.若滿足,則的長度為(

          A.3B.5C.57D.37

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,等腰直角三角形中,,,點坐標(biāo)為,點坐標(biāo)為,且 ,滿足

          (1)寫出、兩點坐標(biāo);

          (2)點坐標(biāo);

          (3)如圖,上一點,且,請寫出線段的數(shù)量關(guān)系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,RtABC中,∠A90°,ABAC,點DBC邊的中點連接AD,則易證ADBDCD,即ADBC;如圖2,若將題中ABAC這個條件刪去,此時AD仍然等于BC

          理由如下:延長ADH,使得AH2AD,連接CH,先證得ABD≌△CHD,此時若能證得ABC≌△CHA

          即可證得AHBC,此時ADBC,由此可見倍長過中點的線段是我們?nèi)切巫C明中常用的方法.

          1)請你先證明ABC≌△CHA,并用一句話總結(jié)題中的結(jié)論;

          2)現(xiàn)將圖1ABC折疊(如圖3),點A與點D重合,折痕為EF,此時不難看出BDECDF都是等腰直角三角形.BEDE,CFDF.由勾股定理可知DE2+DF2EF2,因此BE2+CF2EF2,若圖2ABC也進(jìn)行這樣的折疊(如圖4),此時線段BECF、EF還有這樣的關(guān)系式嗎?若有,請證明;若沒有,請舉反例.

          3)在(2)的條件下,將圖3中的DEF繞著點D旋轉(zhuǎn)(如圖5),射線DE、DF分別交AB、AC于點E、F,此時(2)中結(jié)論還成立嗎?請說明理由.圖4中的DEF也這樣旋轉(zhuǎn)(如圖6),直接寫出上面的關(guān)系式是否成立.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+2x軸于點A,交y軸于點B

          (1)求∠OAB的度數(shù);

          (2)點M是直線y=﹣x+2上的一個動點,且⊙M的半徑為2,圓心為M,判斷原點O與⊙M的位置關(guān)系,并說明理由;

          (3)當(dāng)⊙My軸相切時,直接寫出切點的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,、兩點,點,的半徑是,周長為,則________

          查看答案和解析>>

          同步練習(xí)冊答案