日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情
          已知數軸上兩點A、B對應的數分別是 6,-8,M、N、P為數軸上三個動點,點M從A點出發(fā)速度為每秒2個單位,點N從點B出發(fā)速度為M點的3倍,點P從原點出發(fā)速度為每秒1個單位.
          (1)若點M向右運動,同時點N向左運動,求多長時間點M與點N相距54個單位?
          (2)若點M、N、P同時都向右運動,求多長時間點P到點M,N的距離相等?
          分析:(1)設經過x秒點M與點N相距54個單位,由點M從A點出發(fā)速度為每秒2個單位,點N從點B出發(fā)速度為M點的3倍,得出2x+6x+14=54求出即可;
          (2)首先設經過x秒點P到點M,N的距離相等,得出(2t+6)-t=(6t-8)-t或(2t+6)-t=t-(6t-8),進而求出即可.
          解答:解:(1)設經過x秒點M與點N相距54個單位.
          依題意可列方程為:2x+6x+14=54,
          解方程,得x=5.  
          答:經過5秒點M與點N相距54個單位.(算術方法對應給分)

          (2)設經過t秒點P到點M,N的距離相等.
          (2t+6)-t=(6t-8)-t或(2t+6)-t=t-(6t-8),
          t+6=5t-8或t+6=8-5t
          t=
          7
          2
          或t=
          1
          3
          ,
          答:經過
          7
          2
          1
          3
          秒點P到點M,N的距離相等.
          點評:此題主要考查了一元一次方程的應用,根據已知點運動速度得出以及距離之間的關系得出等式是解題關鍵.
          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:

          11、已知數軸上兩點A,B它們所表示的數分別是+3和-5,則線段AB=
          8

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          已知數軸上兩點A、B到原點的距離是
          2
          和2,則AB=
           

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          已知數軸上兩點A、B對應的數分別為-1.3,點P為數軸上一動點,其對應的數為x.
          (1)若點P到點A,點B的距離相等,求點P對應的數;
          (2)數軸上是否存在點P,使點P到點A、點B的距離之和為5?若存在,請求出x的值;若不存在,說明理由:
          (3)當點P以每秒5個單位長度的速度從O點向右運動時,點A以每秒5個單位長度的速度向右運動,點B以每秒4個單位長度的速度向右運動,問它們同時出發(fā),幾秒后P到點A、點B的距離相等?

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          已知數軸上兩點A、B對應的數分別為-1、3,點P為數軸上一動點,其對應的數為x.
          (1)若點P到點A、點B的距離相等,求點P對應的數;
          (2)數軸上是否存在點P,使點P到點A、點B的距離之和為6?若存在,請求出x的值;若不存在,說明理由.

          查看答案和解析>>

          同步練習冊答案