【題目】如圖,在中,
,
,點(diǎn)
從點(diǎn)
沿邊
,
勻速運(yùn)動(dòng)到點(diǎn)
,過點(diǎn)
作
交
于點(diǎn)
,線段
,
,
,則能夠反映
與
之間函數(shù)關(guān)系的圖象大致是( )
A.B.
C.
D.
【答案】D
【解析】
分兩種情況:①當(dāng)P點(diǎn)在OA上時(shí),即0≤x≤2時(shí);②當(dāng)P點(diǎn)在AB上時(shí),即2<x≤4時(shí),求出這兩種情況下的PC長,則y=PCOC的函數(shù)式可用x表示出來,對照選項(xiàng)即可判斷.
解:∵△AOB是等腰直角三角形,AB=,
∴OB=4.
①當(dāng)P點(diǎn)在OA上時(shí),即0≤x≤2時(shí),
PC=OC=x,S△POC=y=PCOC=
x2,
是開口向上的拋物線,當(dāng)x=2時(shí),y=2;
OC=x,則BC=4-x,PC=BC=4-x,
S△POC=y=PCOC=
x(4-x)=-
x2+2x,
是開口向下的拋物線,當(dāng)x=4時(shí),y=0.
綜上所述,D答案符合運(yùn)動(dòng)過程中y與x的函數(shù)關(guān)系式.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場將每件進(jìn)價(jià)為80元的A商品按每件100元出售,一天可售出128件.經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品的銷售單價(jià)每降低1元,其日銷量可增加8件.設(shè)該商品每件降價(jià)x元,商場一天可通過A商品獲利潤y元.
(1)求y與x之間的函數(shù)解析式(不必寫出自變量x的取值范圍)
(2)A商品銷售單價(jià)為多少時(shí),該商場每天通過A商品所獲的利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形OABC的長是12m,寬是4m,按照圖中所示的平面直角坐標(biāo)系,拋物線可以用y=﹣x2+2x+c表示.
(1)請寫出該拋物線的函數(shù)關(guān)系式;
(2)一輛貨運(yùn)汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線形拱壁上需要安裝兩排燈,使它們離地面的高度相等.如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一漁船由西往東航行,在A點(diǎn)測得海島C位于北偏東60°的方向,前進(jìn)30海里到達(dá)B點(diǎn),此時(shí),測得海島C位于北偏東30°的方向,求海島C到航線AB的距離CD的長(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,將∠ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)一定角度后,BC的對應(yīng)邊B'C'交CD邊于點(diǎn)G.連接BB'、CC'.若AD=7,CG=4,AB'=B'G,則
=__(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班“數(shù)學(xué)興趣小組”對函數(shù)y=x2﹣2|x|的圖象和性質(zhì)進(jìn)行了探究,探究過程如下,請補(bǔ)充完整.(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對應(yīng)值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | 3 | m | ﹣1 | 0 | ﹣1 | 0 | 3 | … |
其中,m= .
(2)根據(jù)表中數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).
(4)進(jìn)一步探究函數(shù)圖象發(fā)現(xiàn):
①函數(shù)圖象與x軸有 個(gè)交點(diǎn),所以對應(yīng)的方程x2﹣2|x|=0有 個(gè)實(shí)數(shù)根;
②方程x2﹣2|x|=2有 個(gè)實(shí)數(shù)根.
③關(guān)于x的方程x2﹣2|x|=a有4個(gè)實(shí)數(shù)根時(shí),a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:方程cx2+bx+a=0是一元二次方程ax2+bx+c=0的倒方程.
(1)已知x=2是x2+2x+c=0的倒方程的解,求c的值;
(2)若一元二次方程ax2﹣2x+c=0無解,求證:它的倒方程也一定無解;
(3)一元二次方程ax2﹣2x+c=0(a≠c)與它的倒方程只有一個(gè)公共解,它的倒方程只有一個(gè)解,求a和c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)行垃圾分類和垃圾資源化利用,關(guān)系廣大人民群眾生活環(huán)境,關(guān)系節(jié)約使用資源,也是社會(huì)文明水平的一個(gè)重要體現(xiàn).某環(huán)保公司研發(fā)了甲、乙兩種智能設(shè)備,可利用最新技術(shù)將干垃圾進(jìn)行分選破碎制成固化成型燃料棒,干垃圾由此變身新型清潔燃料.某垃圾處理廠從環(huán)保公司購入以上兩種智能設(shè)備若干,已知購買甲型智能設(shè)備花費(fèi)萬元,購買乙型智能設(shè)備花費(fèi)
萬元,購買的兩種設(shè)備數(shù)量相同,且兩種智能設(shè)備的單價(jià)和為
萬元.
求甲、乙兩種智能設(shè)備單價(jià);
垃圾處理廠利用智能設(shè)備生產(chǎn)燃料棒,并將產(chǎn)品出售.已知燃料棒的成本由人力成本和物資成本兩部分組成,其中物資成本占總成本的
,且生產(chǎn)每噸燃料棒所需人力成本比物資成本的倍
還多
元.調(diào)查發(fā)現(xiàn),若燃料棒售價(jià)為每噸
元,平均每天可售出
噸,而當(dāng)銷售價(jià)每降低
元,平均每天可多售出
噸.垃圾處理廠想使這種燃料棒的銷售利潤平均每天達(dá)到
元,且保證售價(jià)在每噸
元基礎(chǔ)上降價(jià)幅度不超過
,求每噸燃料棒售價(jià)應(yīng)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形.點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)B的坐標(biāo)為(0,-3),反比例函數(shù)的圖象經(jīng)過點(diǎn)C,一次函數(shù)
的圖象經(jīng)過點(diǎn)C,一次函數(shù)
的圖象經(jīng)過點(diǎn)A.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)求點(diǎn)P是反比例函數(shù)圖象上的一點(diǎn),△OAP的面積恰好等于正方形ABCD的面積,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com