日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情

          【題目】如圖,在平面直角坐標系中,矩形OABC的邊OAy軸的正半軸上,Cx軸的正半軸上,已知A(0,8)、C(10,0),作∠AOC的平分線交AB于點D,連接CD,過點DDECDOA于點E

          (1)求點D的坐標;

          (2)求證:△ADE≌△BCD;

          (3)拋物線yx2x+8經過點AC,連接AC.探索:若點Px軸下方拋物線上一動點,過點P作平行于y軸的直線交AC于點M.是否存在點P,使線段MP的長度有最大值?若存在,求出點P的坐標;若不存在,請說明理由.

          【答案】(1)(8,8);(2)詳見解析;(3)存在,P點坐標為(5,﹣6).

          【解析】

          (1)利用角平分線的性質以及矩形的性質得出∠ADO=∠DOC,以及∠AOD=∠ADO,進而得出答案;

          (2)利用全等三角形的判定方法(ASA)即可得出答案;

          (3)設P點坐標為(t, t2t+8),設AC所在的直線的函數關系式為ykx+b,根據A(0,8)、C(10,0),求出AC的解析式,進而用t表示出PM的長,利用二次函數的性質求出PM的最值,點P的坐標也可以求出.

          解:(1)∵OD平分∠AOC,∴∠AOD=∠DOC

          ∵四邊形AOCB是矩形,

          ABOC

          ∴∠AOD=∠DOC

          ∴∠AOD=∠ADO

          OAAD(等角對等邊).

          A點的坐標為(0,8),

          D點的坐標為(8,8)

          (2)∵四邊形AOCB是矩形,

          ∴∠OAB=∠B=90°,BCOA

          OAAD,

          ADBC

          EDDC

          ∴∠EDC=90°

          ∴∠ADE+∠BDC=90°

          ∴∠BDC+∠BCD=90°.

          ∴∠ADE=∠BCD

          在△ADE和△BCD中,

          ∵∠DAE=∠B,ADBC,∠ADE=∠BCD

          ∴△ADE≌△BCDASA

          (3)存在,

          ∵二次函數的解析式為:,點P是拋物線上的一動點,

          ∴設P點坐標為(t, t2t+8

          AC所在的直線的函數關系式為ykx+b

          A(0,8)、C(10,0),

          ,解得

          ∴直線AC的解析式y(tǒng)=-

          PMy軸,

          Mt,-).

          PM=﹣(  t2t+8)+(-)=- (t-5)2+10.

          ∴當t=5時,PM有最大值為10.

          ∴所求的P點坐標為(5,﹣6).

          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:

          【題目】ABC在網格中的位置如圖所示(每個小正方形邊長為1),ADBCD,下列選項中,錯誤的是( 。

          A. sinαcosα B. tanC2 C. sinβ D. tanα1

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,利用一面墻(墻的長度不超過45m),用80m長的籬笆圍一個矩形場地.

          (1)怎樣圍才能使矩形場地的面積為750m2

          (2)能否使所圍矩形場地的面積為810m2 ,為什么?

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】二次函數的圖象如圖所示,下列結論:;;;,其中正確結論的是  

          A. B. C. D.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】k=2時,下列雙曲線中,在每一個象限內,yx增大而減小的是( 。

          A. y= B. y= C. y= D. y=

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】操場上有三根測桿AB,MNXYMNXY,其中測桿AB在太陽光下某一時刻的影子為BC(如圖中粗線).

          (1)畫出測桿MN在同一時刻的影子NP(用粗線表示),并簡述畫法;

          (2)若在同一時刻測桿XY的影子的頂端恰好落在點B處,畫出測桿XY所在的位置(用實線表示),并簡述畫法.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】完成下列各題:

          (1)三根垂直地面的木桿甲、乙、丙,在路燈下乙、丙的影子如圖1所示.試確定路燈燈泡的位置,再作出甲的影子.(不寫作法,保留作圖痕跡)

          (2)如圖2,在平行四邊形ABCD中,點E,F分別在ABCD上,AECF.求證:DEBF.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】閱讀材料,解答問題.

          材料:“小聰設計的一個電子游戲是:一電子跳蚤從這P1(3,9)開始,按點的橫坐標依次增加1的規(guī)律,在拋物線yx2上向右跳動,得到點P2、P3、P4P5(如圖1所示).過P1、P2、P3別作P1H1、P2H2P3H3垂直于x軸,垂足為H1H2、H3,則SP1P2P3S梯形P1H1H3P3S梯形P1H1H2P2S梯形P2H2H3P3(9+1)×2(9+4)×1(4+1)×1,即△P1P2P3的面積為1.”

          問題:

          (1)求四邊形P1P2P3P4P2P3P4P5的面積(要求:寫出其中一個四邊形面積的求解過程,另一個直接寫出答案);

          (2)猜想四邊形Pn1PnPn+1Pn+2的面積,并說明理由(利用圖2)

          (3)若將拋物線yx2改為拋物線yx2+bx+c,其它條件不變,猜想四邊形Pn1PnPn+1Pn+2的面積(直接寫出答案)

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,大樓(可以看作不透明的長方體)的四周都是空曠的水平地面.地面上有甲、乙兩人,他們現在分別位于點和點處,、均在的中垂線上,且、到大樓的距離分別為米和米,又已知米,米,由于大樓遮擋著,所以乙不能看到甲.若乙沿著大樓的外面地帶行走,直到看到甲(甲保持不動),則他行走的最短距離長為________米.

          查看答案和解析>>

          同步練習冊答案