【題目】如圖,△ABC 中,點 D 為邊 BC 的點,點 E、F 分別是邊 AB、AC 上兩點,且 EF∥BC,若 AE:EB=m,BD:DC=n,則( )
A.若 m>1,n>1,則 2S△AEF>S△ABDB.若 m>1,n<1,則 2S△AEF<S△ABD
C.若 m<1,n<1,則 2S△AEF<S△ABDD.若 m<1,n>1,則 2S△AEF<S△ABD
【答案】D
【解析】
根據(jù)相似三角形的判定與性質(zhì),得出,
,從而建立等式關(guān)系,得出
,然后再逐一分析四個選項,即可得出正確答案 .
解:∵EF∥BC,若AE:EB=m,BD:DC=n,
∴△AEF∽△ABC,
∴,
∴,
∴,
∴
∴當(dāng)m=1,n=1,即當(dāng)E為AB中點,D為BC中點時,,
A.當(dāng)m>1,n>1時,S△AEF與S△ABD同時增大,則或
,即2
或2>
,故A錯誤;
B.當(dāng)m>1,n <1,S△AEF增大而S△ABD減小,則,即2
,故B錯誤;
C.m<1,n<1,S△AEF與S△ABD同時減小,則或
,即2
或2
<
,故C錯誤;
D.m<1,n>1,S△AEF減小而S△ABD增大,則,即2
<
,故D正確 .
故選D .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用20m長的籬笆圍成一個矩形ABCD(籬笆只圍AB,BC兩邊),設(shè)ABxm.
(1)若花園的面積96m2,求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是11m和5m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),求花園面積S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,中,
,動點
從
出發(fā),以每秒
個單位長度的速度向終點
運動,過點
作
交
于點
,過點
作
的平行線,與過點
且與
垂直的直線交于點
,設(shè)點
的運動時間為
(秒)
(1)用含的代數(shù)式表示線段
的長;
(2)求當(dāng)點落在
邊上時t的值;
(3)設(shè)與
重合部分圖形的面積為
(平方單位),求
與的
函數(shù)關(guān)系式;
(4)連結(jié),若將
沿它自身的某邊翻折,翻折前后的兩個三角形形成菱形,直接寫出此時
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一元二次方程滿足a+b+c=0,我們稱這個方程為“鳳凰”方程.已知
是鳳凰方程,且有兩個相等的實數(shù)根,則下列正確的是( 。
A.a=cB.a=bC.b=cD.a=b=c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)市委市政府提出的建設(shè)“綠色襄陽”的號召,我市某單位準備將院內(nèi)一塊長30m,寬20m的長方形空地,建成一個矩形花園.要求在花園中修兩條縱向平行和一條橫向彎折的小道,剩余的地方種植花草,如圖所示,要使種植花草的面積為532m2,那么小道進出口的寬度應(yīng)為多少米?(注:所有小道進出口的寬度相等,且每段小道均為平行四邊形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD是邊AB上的中線,∠B是銳角,sinB=,tanA=
,AC=
,
(1)求∠B 的度數(shù)和 AB 的長.
(2)求 tan∠CDB 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 鄭州外國語中學(xué)為了解學(xué)生課下閱讀所用時間的情況,從各年級學(xué)生中隨機抽查了一部分學(xué)生進行統(tǒng)計,下面是針對此次統(tǒng)計所制作的不完整的頻數(shù)分布表和頻數(shù)分布直方圖,請根據(jù)圖表信息回答下列問題:
組別 | 時間段(小時) | 頻數(shù) | 頻率 |
1 | 0≤x<0.5 | 10 | 0.05 |
2 | 0.5≤x<1.0 | 20 | 0.10 |
3 | 1.0≤x<1.5 | 80 | b |
4 | 1.5≤x<2.0 | a | 0.35 |
5 | 2.0≤x<2.5 | 12 | 0.06 |
6 | 2.5≤x<3.0 | 8 | 0.04 |
(1)表中a=______b=______;
(2)請補全頻數(shù)分布直方圖;
(3)樣本中,學(xué)生日閱讀所用時間的中位數(shù)落在第______組;
(4)該校共有學(xué)生3000人,請估計學(xué)生日閱讀量不少于1.5小時的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸的正半軸交于點C,頂點為D.
(1)求頂點D的坐標(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°,得到△PMN(點P、M、N分別和點O、B、E對應(yīng)),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;
③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,
,
,
,
,點
是邊
上一點,過點
分別作
與
的垂線,過點
作
的垂線,得到矩形
和矩形
,則這兩個矩形的面積之和的最大值是_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com