日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線y=x2+bx+c與直線y=x+3交于A,B兩點,交x軸于C、D兩點,連接AC、BC,已知A(0,3),C(﹣3,0).

          (1)求拋物線的解析式;

          (2)在拋物線對稱軸l上找一點M,使|MB﹣MD|的值最大,并求出這個最大值;

          (3)點Py軸右側(cè)拋物線上一動點,連接PA,過點PPQPAy軸于點Q,問:是否存在點P使得以A,P,Q為頂點的三角形與ABC相似?若存在,請求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.

          【答案】(1)拋物線的解析式是y=x2+x+3;(2)|MB﹣MD|取最大值為;(3)存在點P(1,6).

          【解析】(1)根據(jù)待定系數(shù)法,可得函數(shù)解析式;

          (2)根據(jù)對稱性,可得MC=MD,根據(jù)解方程組,可得B點坐標(biāo),根據(jù)兩邊之差小于第三邊,可得B,C,M共線,根據(jù)勾股定理,可得答案;

          (3)根據(jù)等腰直角三角形的判定,可得∠BCE,∠ACO,根據(jù)相似三角形的判定與性質(zhì),可得關(guān)于x的方程,根據(jù)解方程,可得x,根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得答案.

          (1)將A(0,3),C(﹣3,0)代入函數(shù)解析式,得

          解得,

          拋物線的解析式是y=x2+x+3;

          (2)由拋物線的對稱性可知,點D與點C關(guān)于對稱軸對稱,

          ∴對l上任意一點有MD=MC,

          聯(lián)立方程組 ,

          解得(不符合題意,舍),,

          ∴B(﹣4,1),

          當(dāng)點B,C,M共線時,|MB﹣MD|取最大值,即為BC的長,

          過點B作BE⊥x軸于點E,

          ,

          在Rt△BEC中,由勾股定理,得

          BC=,

          |MB﹣MD|取最大值為

          (3)存在點P使得以A,P,Q為頂點的三角形與△ABC相似,

          在Rt△BEC中,∵BE=CE=1,

          ∴∠BCE=45°,

          在Rt△ACO中,

          ∵AO=CO=3,

          ∴∠ACO=45°,

          ∴∠ACB=180°﹣45°﹣45°=90°,

          過點P作PQ⊥y軸于Q點,∠PQA=90°,

          設(shè)P點坐標(biāo)為(x,x2+x+3)(x>0)

          ①當(dāng)∠PAQ=∠BAC時,△PAQ∽△CAB,

          ∵∠PGA=∠ACB=90°,∠PAQ=∠CAB,

          ∴△PGA∽△BCA,

          ,即,

          ,

          解得x1=1,x2=0(舍去),

          ∴P點的縱坐標(biāo)為×12+×1+3=6,

          ∴P(1,6),

          ②當(dāng)∠PAQ=∠ABC時,△PAQ∽△CBA,

          ∵∠PGA=∠ACB=90°,∠PAQ=∠ABC,

          ∴△PGA∽△ACB,

          =3,

          解得x1=﹣(舍去),x2=0(舍去)

          ∴此時無符合條件的點P,

          綜上所述,存在點P(1,6).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為厲行節(jié)能減排,倡導(dǎo)綠色出行,今年3月以來.“共享單車”(俗稱“小黃車”)公益活動登陸我市中心城區(qū),某公司擬在甲、乙兩個街道社區(qū)投放一批“小黃車”,這批自行車包括A、B兩種不同款型,請回答下列問題:

          問題1:單價

          該公司早期在甲街區(qū)進(jìn)行了試點投放,共投放A、B兩型自行車各50輛,投放成本共計7500元,其中B型車的成本單價比A型車高10元,A、B兩型自行車的單價各是多少?

          問題2:投放方式

          該公司決定采取如下投放方式:甲街區(qū)每1000人投放a輛“小黃車”,乙街區(qū)每1000人投放 輛“小黃車”,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個街區(qū)共有15萬人,試求a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某?萍夹〗M進(jìn)行野外考察,途中遇到一片濕地,為了安全、迅速通過這片濕地,他們沿著前進(jìn)路線鋪了若干塊木塊,構(gòu)筑成一條臨時近道,木板對地面的壓強(qiáng)是木板面積的反比例函數(shù),其圖像如下圖所示:

          1)請直接寫出這一函數(shù)表達(dá)式和自變量取值范圍;

          2)當(dāng)木板面積為時,壓強(qiáng)是多少?

          3)如果要求壓強(qiáng)不超過,木板的面積至少要多大?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小馬、小虎兩人共同計算一道題:(x+a)(2x+b).由于小馬抄錯了a的符號,得到的結(jié)果是2x27x+3,小虎漏抄了第二個多項式中x的系數(shù)得到的結(jié)果是x2+2x3

          1)求a,b的值;

          2)細(xì)心的你請計算這道題的正確結(jié)果;

          3)當(dāng)x=﹣1時,計算(2)中的代數(shù)式的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列說法正確的是(

          ①經(jīng)過三個點一定可以作圓;②若等腰三角形的兩邊長分別為37,則第三邊長是37;③一個正六邊形的內(nèi)角和是其外角和的2倍;④隨意翻到一本書的某頁,頁碼是偶數(shù)是隨機(jī)事件;⑤關(guān)于x的一元二次方程x2-(k+3)x+k=0有兩個不相等的實數(shù)根.

          A.①②③B.①④⑤C.②③④D.③④⑤

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(﹣2,0),等邊△AOC經(jīng)過平移或軸對稱或旋轉(zhuǎn)都可以得到△OBD.

          (1)△AOC沿x軸向右平移得到△OBD,則平移的距離是   個單位長度;△AOC△BOD關(guān)于直線對稱,則對稱軸是   ;△AOC繞原點O順時針旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度可以是   度.

          (2)連接AD,交OC于點E,求AD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(1)如圖1,O是等邊△ABC內(nèi)一點,連接OA、OB、OC,且OA=3,OB=4,OC=5,將△BAO繞點B順時針旋轉(zhuǎn)后得到△BCD,連接OD.求:

          旋轉(zhuǎn)角的度數(shù);

          線段OD的長;

          ③∠BDC的度數(shù).

          (2)如圖2所示,O是等腰直角△ABC(∠ABC=90°)內(nèi)一點,連接OA、OB、OC,將△BAO繞點B順時針旋轉(zhuǎn)后得到△BCD,連接OD.當(dāng)OA、OB、OC滿足什么條件時,∠ODC=90°?請給出證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知關(guān)于x的一元二次方程tx26x+m+4=0有兩個實數(shù)根x1、x2

          (1)當(dāng)m=1時,求t的取值范圍;

          (2)當(dāng)t=1時,若x1、x2滿足3| x1|=x2+4,求m的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在《九章算術(shù)》“勾股”章中有這樣一個問題:

          “今有邑方不知大小,各中開門,出北門二十步有木,出南門十回步,折而西行一千七百七十五步見木.問邑方幾何.”用今天的話說,大意是:如圖,DEFG是一座正方形小城,北門H位于DG的中點,南門K位于EF的中點,出北門20步到A處有一樹木,出南門14步到C,再向西行1775步到B處,正好看到A處的樹木(即點D在直線AB上),求小城的邊長.

          查看答案和解析>>

          同步練習(xí)冊答案