日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
          (1)操作發(fā)現(xiàn) 如圖2,固定△ABC,使△DEC繞點C旋轉(zhuǎn),當(dāng)點D恰好落在AB邊上時,填空:
          ② 線段DE與AC的位置關(guān)系是;
          ②設(shè)△BDC的面積為S1 , △AEC的面積為S2 , 則S1與S2的數(shù)量關(guān)系是

          (2)猜想論證 當(dāng)△DEC繞點C旋轉(zhuǎn)到如圖3所示的位置時,小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請你證明小明的猜想.
          (3)拓展探究 已知∠ABC=60°,點D是角平分線上一點,BD=CD=4,DE∥AB交BC于點E(如圖4).若在射線BA上存在點F,使SDCF=SBDE , 請直接寫出相應(yīng)的BF的長.

          【答案】
          (1)DE∥AC;S1=S2
          (2)解:如圖,∵△DEC是由△ABC繞點C旋轉(zhuǎn)得到,

          ∴BC=CE,AC=CD,

          ∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,

          ∴∠ACN=∠DCM,

          ∵在△ACN和△DCM中,

          ,

          ∴△ACN≌△DCM(AAS),

          ∴AN=DM,

          ∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),

          即S1=S2;


          (3)解:如圖,過點D作DF1∥BE,易求四邊形BEDF1是菱形,

          所以BE=DF1,且BE、DF1上的高相等,

          此時SDCF1=SBDE;

          過點D作DF2⊥BD,

          ∵∠ABC=60°,F(xiàn)1D∥BE,

          ∴∠F2F1D=∠ABC=60°,

          ∵BF1=DF1,∠F1BD= ∠ABC=30°,∠F2DB=90°,

          ∴∠F1DF2=∠ABC=60°,

          ∴△DF1F2是等邊三角形,

          ∴DF1=DF2

          ∵BD=CD,∠ABC=60°,點D是角平分線上一點,

          ∴∠DBC=∠DCB= ×60°=30°,

          ∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,

          ∠CDF2=360°﹣150°﹣60°=150°,

          ∴∠CDF1=∠CDF2,

          ∵在△CDF1和△CDF2中,

          ,

          ∴△CDF1≌△CDF2(SAS),

          ∴點F2也是所求的點,

          ∵∠ABC=60°,點D是角平分線上一點,DE∥AB,

          ∴∠DBC=∠BDE=∠ABD= ×60°=30°,

          又∵BD=4,

          ∴BE= ×4÷cos30°=2÷ = ,

          ∴BF1= ,BF2=BF1+F1F2= + = ,

          故BF的長為


          【解析】解:(1)①∵△DEC繞點C旋轉(zhuǎn)點D恰好落在AB邊上, ∴AC=CD,
          ∵∠BAC=90°﹣∠B=90°﹣30°=60°,
          ∴△ACD是等邊三角形,
          ∴∠ACD=60°,
          又∵∠CDE=∠BAC=60°,
          ∴∠ACD=∠CDE,
          ∴DE∥AC;
          ②∵∠B=30°,∠C=90°,
          ∴CD=AC= AB,
          ∴BD=AD=AC,
          根據(jù)等邊三角形的性質(zhì),△ACD的邊AC、AD上的高相等,
          ∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),
          即S1=S2
          所以答案是:DE∥AC;S1=S2;

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖已知∠1=∠2,∠BAD=∠BCD,則下列結(jié)論:ABCD,②ADBC,③∠B=∠D,④∠D=∠ACB,正確的有( 。

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某市為了鼓勵居民節(jié)約用電,采用分段計費的方法按月計算每戶家庭的電費,分兩檔收費:第一檔是當(dāng)月用電量不超過240度時實行基礎(chǔ)電價;第二檔是當(dāng)用電量超過240度時,其中的240度仍按照基礎(chǔ)電價計費,超過的部分按照提高電價收費.設(shè)每個家庭月用電量為x 度時,應(yīng)交電費為y 元.具體收費情況如折線圖所示,請根據(jù)圖象回答下列問題:

          (1)“基礎(chǔ)電價____________ 度;

          (2)求出當(dāng)x240 時,y與x的函數(shù)表達式;

          (3)若紫豪家六月份繳納電費132元,求紫豪家這個月用電量為多少度?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,點P1次向上跳動1個單位至點,緊接著第2次向左跳動2個單位至點,第3次向上跳動1個單位至點,第4次向右跳動3個單位至點,第5次又向上跳動1個單位至點,第6次向左跳動4個單位至點,照此規(guī)律,點P100次跳動至點的坐標(biāo)是  

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形OABC的頂點A、C分別在x軸和y軸上,點B的坐標(biāo)為(2,3).雙曲線y= (x>0)的圖象經(jīng)過BC的中點D,且與AB交于點E,連接DE.

          (1)求k的值及點E的坐標(biāo);
          (2)若點F是OC邊上一點,且△FBC∽△DEB,求直線FB的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:線段AB=40cm.

          (1)如圖①,點P沿線段AB自點A向點B3厘米/秒運動,同時點Q線段BAB點向點A5厘米/秒運動,問經(jīng)過幾秒后P、Q相遇?

          (2)幾秒鐘后,P、Q相距16厘米?

          (3)如圖②,AO=PO=8厘米,∠POB=40°,點P繞點O20/秒的速度順時針旋轉(zhuǎn)一周停止,同時點Q沿直線BAB點向點A運動,假若P、Q兩點能相遇,求Q運動的速度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在BC中,AC=BC,點D、E分別是邊AB、AC的中點.延長DE到點F,使DE=EF,得四邊形ADCF.若使四邊形ADCF是正方形,則應(yīng)在ABC中再添加一個條件為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】先化簡,再求值

          (1)2x-{-3y+[3x-2(3xy)]},其中x=-1,y

          (2)5(3a2bab2-1)-(ab2+3a2b-5),其中a,b

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某旅行社擬在暑假期間面向?qū)W生推出“林州紅旗渠一日游”活動,收費標(biāo)準(zhǔn)如下:

          人數(shù)m

          0<m≤100

          100<m≤200

          m>200

          收費標(biāo)準(zhǔn)(元/人)

          90

          85

          75

          甲、乙兩所學(xué)校計劃組織本校學(xué)生自愿參加此項活動.已知甲校報名參加的學(xué)生人數(shù)多于100人,乙校報名參加的學(xué)生人數(shù)少于100人.經(jīng)核算,若兩校分別組團共需花費20 800元,若兩校聯(lián)合組團只需花費18 000元.
          (1)兩所學(xué)校報名參加旅游的學(xué)生人數(shù)之和超過200人嗎?為什么?
          (2)兩所學(xué)校報名參加旅游的學(xué)生各有多少人?

          查看答案和解析>>

          同步練習(xí)冊答案