日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知⊙O的直徑AB的長(zhǎng)為4cm,C是⊙O上一點(diǎn),∠BAC=30°,過(guò)點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)P,求BP的長(zhǎng).
          連接OC,
          ∵OA=OC,
          ∴∠BAC=∠ACO=30°,
          ∴∠COB=60°,
          ∵PC是切線,
          ∴OC⊥PC,
          ∴∠P=30°,
          ∴OP=2OC=4cm,
          ∴BP=OP-OB=4-2=2cm.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          有人請(qǐng)?zhí)┛说靥汗緸槟承陆C(jī)場(chǎng)的環(huán)形通道鋪設(shè)地毯.當(dāng)泰克先生拿到計(jì)劃藍(lán)圖(如圖)時(shí),他有些生氣:與內(nèi)圓相切的一條弦的長(zhǎng)度是唯一給出的尺寸數(shù)據(jù).“這就難了,”泰克想,“兩圓之間環(huán)形陰影的面積不知道,怎么能估計(jì)出大致需要多少地毯呢?最好去找找設(shè)計(jì)師薩普先生.”薩普先生是個(gè)優(yōu)秀的幾何學(xué)家,他對(duì)此倒是處之泰然:“對(duì)我來(lái)說(shuō),有這一個(gè)數(shù)據(jù)就夠了,把這個(gè)數(shù)據(jù)代入公式就能求出圓環(huán)的面積.”泰克先生吃了一驚,略一思索,便現(xiàn)出了笑容:“謝謝你,薩普先生,無(wú)須勞駕你動(dòng)用什么公式了,我可以馬上得出答案.”你知道泰克先生是怎么算的嗎?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖,PA、PB分別切⊙O于點(diǎn)A、B,若∠P=70°,則∠C的大小為______(度).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖AB是⊙O的直徑,從⊙O外一點(diǎn)C引⊙O切線CD,D是切點(diǎn),再?gòu)腃點(diǎn)引割線交⊙O于E、F交BD于G,EF⊥AB于H,已知AB=4,OH=HB,CE=
          1
          2
          EF,則CG=______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知PA、PB切⊙O于A、B兩點(diǎn).連接AB且PA、PB的長(zhǎng)分別是方程x2-2mx+3=0的兩根,AB=m,求⊙O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,PA、PB是⊙O的兩條切線,切點(diǎn)分別為A、B若直徑AC=12cm,∠P=60°,求弦AB的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          如圖,已知PA、PB切⊙O于點(diǎn)A、B,OP交AB于C,則圖中能用字母表示的直角共有( 。﹤(gè).
          A.3B.4C.5D.6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          如圖,PB,PC分別切⊙O于B、C兩點(diǎn),點(diǎn)A在⊙O上,若∠A=65°,則∠P=______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖i,半圓O為△ABC的外接半圓,AC為直徑,D為劣弧
          BC
          上的一動(dòng)點(diǎn),P在CB的延長(zhǎng)線上,且有∠BAP=∠BDA.
          (1)求證:AP是半圓O的切線;
          (2)當(dāng)其它條件不變時(shí),問(wèn)添加一個(gè)什么條件后,有BD2=BE•BC成立?說(shuō)明理由;
          (3)如圖ii,在滿足(2)問(wèn)的前提下,若OD⊥BC與H,BE=2,EC=4,連接PD,請(qǐng)?zhí)骄克倪呅蜛BDO是什么特殊的四邊形,并求tan∠DPC的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案