日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】平和中學(xué)以小元所在班級為例,對該班學(xué)生最喜愛參加的各類體育運(yùn)動(dòng)項(xiàng)目的情況進(jìn)行了調(diào)査統(tǒng)計(jì)(最喜愛的項(xiàng)目只能選一項(xiàng)).并把調(diào)查的結(jié)果繪制成了如下圖所示的兩種不完全統(tǒng)計(jì)圖,請你根據(jù)信息回答下列問題:

          1)小元所在的班級共有多少名學(xué)生?

          2)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖

          3)如果平和中學(xué)總計(jì)有800名學(xué)生,請你估計(jì)全校學(xué)生中最喜歡參加籃球和最喜歡乒乓球運(yùn)動(dòng)共有多少人.

          【答案】150;(2)詳見解析;(3240

          【解析】

          1)利用喜歡跳繩的人數(shù)除以其所占班級總?cè)藬?shù)的百分比即可求出結(jié)論;

          2)利用班級總?cè)藬?shù)減去喜歡跳繩、乒乓球和其它的人數(shù)即可求出喜歡籃球的人數(shù),然后補(bǔ)全條形統(tǒng)計(jì)圖即可;

          3)先求出最喜歡參加籃球和最喜歡乒乓球所占百分比再乘800即可.

          1(名)

          答:小元所在的班級共有50名學(xué)生

          2(名)

          ∴喜歡籃球運(yùn)動(dòng)的有5名學(xué)生

          補(bǔ)全圖形如下

          3(人)

          答:全校學(xué)生中最喜歡籃球和乒乓球的共有240

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,拋物線a≠0)與y軸交與點(diǎn)C0,3),與x軸交于A、B兩點(diǎn),點(diǎn)B坐標(biāo)為(4,0),拋物線的對稱軸方程為x=1

          1)求拋物線的解析式;

          2)點(diǎn)MA點(diǎn)出發(fā),在線段AB上以每秒3個(gè)單位長度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)NB點(diǎn)出發(fā),在線段BC上以每秒1個(gè)單位長度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),設(shè)△MBN的面積為S,點(diǎn)M運(yùn)動(dòng)時(shí)間為t,試求St的函數(shù)關(guān)系,并求S的最大值;

          3)在點(diǎn)M運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使△MBN為直角三角形?若存在,求出t值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我們曾學(xué)過定理在直角三角形中,如果一個(gè)銳角等于,那么它所對的直角邊等于斜邊的一半,其逆命題也是成立的,即在直角三角形中,如果一直角邊等于斜邊的一半,那么該直角邊所對的角為”.如圖,在中,,如果,那么.

          請你根據(jù)上述命題,解決下面的問題:

          1)如圖1,,為格點(diǎn),以為圓心,長為半徑畫弧交直線于點(diǎn),則______;

          2)如圖2、為格點(diǎn),按要求在網(wǎng)格中作圖(保留作圖痕跡)。

          ,使點(diǎn)在直線上,并且,.

          3)如圖3,在中,,,內(nèi)一點(diǎn),,,且.

          ①求的度數(shù);

          ②求證:.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】矩形ABCD中,點(diǎn)P在對角線BD上(點(diǎn)P不與點(diǎn)B重合),連接AP,過點(diǎn)PPEAP交直線BC于點(diǎn)E

          1)如圖1,當(dāng)ABBC時(shí),猜想線段PAPE的數(shù)量關(guān)系:  

          2)如圖2,當(dāng)ABBC時(shí).求證:

          3)若AB8,BC10,以APPE為邊作矩形APEF,連接BF,當(dāng)PE時(shí),直接寫出線段BF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正方形中,為線段上的動(dòng)點(diǎn)(不含端點(diǎn)),將沿著翻折得到,

          1)如圖1,當(dāng),求長;

          2)如圖2,為線段上的點(diǎn),當(dāng)時(shí),求點(diǎn)的運(yùn)動(dòng)過程中,線段掃過的圖形與重疊部分的面積;

          3)如圖3,上,連接,將沿著翻折得到,連結(jié),問是否存在點(diǎn),使得相似?若存在,求出的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】自主互助學(xué)習(xí)型課堂競賽中,為獎(jiǎng)勵(lì)表現(xiàn)突出的同學(xué),初一(7)班利用班費(fèi)元錢,購買鋼筆、相冊、筆記本三種獎(jiǎng)品,其中鋼筆至多買支,若鋼筆每支元,相冊每本元,筆記本每本元,在把錢都用盡的條件下,買法共有(

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,曲線是拋物線的一部分(其中是拋物線與軸的交點(diǎn),是頂點(diǎn)),曲線是雙曲線的一部分.曲線組成圖形.由點(diǎn)開始不斷重復(fù)圖形形成一組波浪線.若點(diǎn)在該波浪線上,則的最大值為(

          A.5B.6C.2020D.2021

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,菱形AOBC的頂點(diǎn)By軸上,頂點(diǎn)A在反比例函數(shù)y的圖象上,邊ACOA分別交反比例函數(shù)y的圖象于點(diǎn)D,點(diǎn)E,邊ACx軸于點(diǎn)F,連接CE.已知四邊形OBCE的面積為12,sinAOF ,則k的值為( 。

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(問題)用n個(gè)2×1矩形,鑲嵌一個(gè)n矩形,有多少種不同的鑲嵌方案?(n矩形表示矩形的鄰邊是2n

          (探究)不妨假設(shè)有an種不同的鑲嵌方案.為探究an的變化規(guī)律,我們采取一般問題特殊化的策略,先從最簡單情形入手,再逐次遞進(jìn),最后猜想得出結(jié)論.

          探究一:用1個(gè)2×1矩形,鑲嵌一個(gè)2×1矩形,有多少種不同的鑲嵌方案?

          如圖(1),顯然只有1種鑲嵌方案.所以,a11

          探究二:用2個(gè)2×1矩形,鑲嵌一個(gè)2×2矩形,有多少種不同的鑲嵌方案?

          如圖(2),顯然只有2種鑲嵌方案.所以,a22

          探究三:用3個(gè)2×1矩形,鑲嵌一個(gè)2×3矩形,有多少種不同的鑲嵌方案?

          一類:在探究一每個(gè)鑲嵌圖的右側(cè)再橫著鑲嵌2個(gè)2×1矩形,有1種鑲嵌方案;

          二類:在探究二每個(gè)鑲嵌圖的右側(cè)再豎著鑲嵌1個(gè)2×1矩形,有2種鑲嵌方案;

          如圖(3).所以,a31+23

          探究四:用4個(gè)2×1矩形,鑲嵌一個(gè)2×4矩形,有多少種不同的鑲嵌方案?

          一類:在探究二每個(gè)鑲嵌圖的右側(cè)再橫著鑲嵌2個(gè)2×1矩形,有   種鑲嵌方案;

          二類:在探究三每個(gè)鑲嵌圖的右側(cè)再豎著鑲嵌1個(gè)2×1矩形,有   種鑲嵌方案;

          所以,a4   

          探究五:用5個(gè)2×1矩形,鑲嵌一個(gè)2×5矩形,有多少種不同的鑲嵌方案?

          (仿照上述方法,寫出探究過程,不用畫圖)

          ……

          (結(jié)論)用n個(gè)2×1矩形,鑲嵌一個(gè)n矩形,有多少種不同的鑲嵌方案?

          (直接寫出anan1,an2的關(guān)系式,不寫解答過程).

          (應(yīng)用)用10個(gè)2×1矩形,鑲嵌一個(gè)2×10矩形,有   種不同的鑲嵌方案.

          查看答案和解析>>

          同步練習(xí)冊答案