【題目】為了測(cè)量被池塘隔開(kāi)的A,B兩點(diǎn)之間的距離,根據(jù)實(shí)際情況,作出如圖所示圖形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同學(xué)分別測(cè)量出以下四組數(shù)據(jù),根據(jù)所測(cè)數(shù)據(jù)不能求出A,B間距離的是( 。
A. BC,∠ACB B. DE,DC,BC C. EF,DE,BD D. CD,∠ACB,∠ADB
【答案】B
【解析】
根據(jù)三角形相似可知,要求出AB,只需求出EF即可.所以借助于相似三角形的性質(zhì),根據(jù) 即可解答.
解:此題比較綜合,要多方面考慮,
A、因?yàn)橹馈?/span>ACB和BC的長(zhǎng),所以可利用∠ACB的正切來(lái)求AB的長(zhǎng);
B、無(wú)法求出A,B間距離.
C、因?yàn)椤?/span>ABD∽△EFD,可利用,求出AB;
D、可利用∠ACB和∠ADB的正切求出AB;
據(jù)所測(cè)數(shù)據(jù)不能求出A,B間距離的是選項(xiàng)B;
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,用直尺和圓規(guī)作∠BAD的平分線(xiàn)AG交BC于點(diǎn)E,若BF=6,AB=4,則AE的長(zhǎng)為( 。
A. B. 2
C. 3
D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)
的圖象交于
,
兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2) 請(qǐng)根據(jù)圖象直接寫(xiě)出時(shí)
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,△ABC為等腰直角三角形,∠BAC=90°,BC=1,E為直角邊AB上任意一點(diǎn),以線(xiàn)段CE為斜邊作等腰Rt△CDE,連接AD,下列說(shuō)法:①AC⊥ED;②∠BCE=∠ACD;③△AED∽△ECB;④AD∥BC;⑤四邊形ABCD面積的最大值為,其中正確的是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在某次作業(yè)中得到如下結(jié)果:
sin27°+sin283°≈0.122+0.992=0.9945,
sin222°+sin268°≈0.372+0.932=1.0018,
sin229°+sin261°≈0.482+0.872=0.9873,
sin237°+sin253°≈0.602+0.802=1.0000,
sin245°+sin245°=+
=1.
據(jù)此,小明猜想:對(duì)于任意銳角α,均有sin2α+sin2(90°-α)=1.
(1)當(dāng)α=30°時(shí),驗(yàn)證sin2α+sin2(90°-α)=1是否成立;
(2)小明的猜想是否成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)舉出一個(gè)反例.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線(xiàn)段AB=1,點(diǎn)P1是線(xiàn)段AB的黃金分割點(diǎn)(且AP1<BP1,即P1B2=AP1AB),點(diǎn)P2是線(xiàn)段AP1的黃金分割點(diǎn)(AP2<P1P2),點(diǎn)P3是線(xiàn)段AP2的黃金分割點(diǎn)(AP3<P2P3),…,依此類(lèi)推,則線(xiàn)段AP2017的長(zhǎng)度是( )
A. ()2017 B. (
)2017 C. (
)2017 D. (
﹣2)1008
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(3,4),點(diǎn)B的坐標(biāo)為(7,0),D,E分別是線(xiàn)段AO,AB上的點(diǎn),以DE所在直線(xiàn)為對(duì)稱(chēng)軸,把△ADE作軸對(duì)稱(chēng)變換得△A′DE,點(diǎn)A′恰好在x軸上,若△OA′D與△OAB相似,則OA′的長(zhǎng)為________.(結(jié)果保留2個(gè)有效數(shù)字)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)陽(yáng)光明媚,微風(fēng)習(xí)習(xí)的周末,小明和小強(qiáng)一起到聶耳文化廣場(chǎng)放風(fēng)箏,放了一會(huì)兒,兩個(gè)人爭(zhēng)吵起來(lái):小明說(shuō):“我的風(fēng)箏飛得比你的高”.小強(qiáng)說(shuō):“我的風(fēng)箏引線(xiàn)比你的長(zhǎng),我的風(fēng)箏飛得更高”.誰(shuí)的風(fēng)箏飛得更高呢?于是他們將兩個(gè)風(fēng)箏引線(xiàn)的一段都固定在地面上的C處(如圖),現(xiàn)已知小明的風(fēng)箏引線(xiàn)(線(xiàn)段AC)長(zhǎng)30米,小強(qiáng)的風(fēng)箏引線(xiàn)(線(xiàn)段BC)長(zhǎng)36米,在C處測(cè)得風(fēng)箏A的仰角為60°,風(fēng)箏B的仰角為45°,請(qǐng)通過(guò)計(jì)算說(shuō)明誰(shuí)的風(fēng)箏飛得更高?(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,
≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC是邊長(zhǎng)為4的等邊三角形,邊AB在射線(xiàn)OM上,且OA=6,點(diǎn)D是射線(xiàn)OM上的動(dòng)點(diǎn),當(dāng)點(diǎn)D不與點(diǎn)A重合時(shí),將△ACD繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn)60°得到△BCE,連接DE.
(1)如圖1,求證:△CDE是等邊三角形.
(2)設(shè)OD=t,
①當(dāng)6<t<10時(shí),△BDE的周長(zhǎng)是否存在最小值?若存在,求出△BDE周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.
②求t為何值時(shí),△DEB是直角三角形(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com