日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線y=x2+1(如圖所示).

          (1)填空:拋物線的頂點坐標(biāo)是  ,  ),對稱軸是   ;

          (2)如圖1,已知y軸上一點A(0,2),點P在拋物線上,過點PPB⊥x軸,垂足為B.若△PAB是等邊三角形,求點P的坐標(biāo);

          (3)如圖,在第二問的基礎(chǔ)上,在拋物線上有一點C(x,y),連接AC、OC、BC、PC,當(dāng)△OAC的面積等于△BCP的面積時,求C的橫坐標(biāo)

          【答案】(1)頂點坐標(biāo)是(0,1),對稱軸是y軸(或x=O)(2)(2,4)(3)

          【解析】分析:

          (1)由二次函數(shù)的圖象和性質(zhì)進(jìn)行解答即可;

          (2)由△PAB是等邊三角形,PB⊥x軸易得∠ABO=30°,結(jié)合∠AOB=90°,AO=2可得AB=4,OB=由此可得點P的坐標(biāo)為;

          (3)如下圖2所示,設(shè)點C的坐標(biāo)為(x,y),SAOC=AO·x,SBCP=PB·(),由SAOC=SBCP列出方程,解方程即可求得點C的坐標(biāo).

          詳解

          (1)∵ 拋物線的頂點坐標(biāo)為(0,k),對稱軸為y軸,

          拋物線的頂點坐標(biāo)是(0,1),對稱軸是y軸(或x=0);

          (2)∵△PAB是等邊三角形,PB⊥x軸于點B,

          ∴∠APB=60°,∠OBP=90°,

          ∴∠ABO=90°﹣60°=30°.

          ∴AB=2OA=4.

          ∴PB=4,

          ∴P(2,4),

          ∵在,當(dāng),,

          ∴點P(2,4)在拋物線,

          符合要求的點P的坐標(biāo)為(2,4);

          (3)下圖2所示,設(shè)點C的坐標(biāo)為(x,y),SAOC=AO·x,SBCP=PB·(),

          ∵SAOC=SBCP,OA=2,PB=4,

          解得 ,

          C的橫坐標(biāo)是 .

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某電子廠商設(shè)計了一款制造成本為18元新型電子廠品,投放市場進(jìn)行試銷.經(jīng)過調(diào)查,得到每月銷售量y(萬件)與銷售單價x(元)之間的部分?jǐn)?shù)據(jù)如下:

          銷售單價x(元/件)

          20

          25

          30

          35

          每月銷售量y(萬件)

          60

          50

          40

          30

          (1)求出每月銷售量y(萬件)與銷售單價x(元)之間的函數(shù)關(guān)系式.

          (2)求出每月的利潤z(萬元)與銷售單x(元)之間的函數(shù)關(guān)系式.

          (3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售利潤率不能高于50%,而且該電子廠制造出這種產(chǎn)品每月的制造成本不能超過900萬元.那么并求出當(dāng)銷售單價定為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?(利潤=售價﹣制造成本)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,,CD是中線,,一個以點D為頂點的角繞點D旋轉(zhuǎn),使角的兩邊分別與ACBC的延長線相交,交點分別為點E,FDFAC交于點M,DEBC交于點N

          如圖1,若,求證:;

          如圖2,在繞點D旋轉(zhuǎn)的過程中:

          探究三條線段ABCE,CF之間的數(shù)量關(guān)系,并說明理由;

          ,,求DN的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某公司銷售一種進(jìn)價為20/個的計算器,其銷售量y(萬個)與銷售價格x(元/的變化如下表:同時,銷售過程中的其他開支(不含進(jìn)價)總計40萬元.

          銷售價格x(/)

          30

          40

          50

          60

          銷售量y(萬個)

          5

          4

          3

          2

          (1)觀察并分析表中的數(shù)據(jù),用所學(xué)過的函數(shù)知識,直接寫出y x的函數(shù)解析式;

          (2)求出該公司銷售這種計算器的凈得利潤z(萬元)與銷售價格 x(元/的函數(shù)解析式,銷售價格定為多少元時凈得利潤最大,最大值是多少?

          (3)該公司要求凈得利潤不能低于40萬元,請你結(jié)合函數(shù)圖象求出銷售價格 x(元/的取值范圍,若還需考慮銷售量盡可能大,銷售價格應(yīng)定為多少元 ?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小凡與小光從學(xué)校出發(fā)到距學(xué)校5千米的圖書館看書,途中小凡從路邊超市買了一些學(xué)習(xí)用品,如圖反應(yīng)了他們倆人離開學(xué)校的路程s(千米)與時間t(分鐘)的關(guān)系,請根據(jù)圖象提供的信息回答問題:
          (1)l1l2哪一條是描述小凡的運動過程,說說你的理由;
          (2)小凡和小光誰先出發(fā),先出發(fā)了多少分鐘?
          (3)小凡與小光誰先到達(dá)圖書館,先到了多少分鐘?
          (4)小凡與小光從學(xué)校到圖書館的平均速度各是多少千米/小時?(不包括中間停留的時間)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】兩個等腰直角三角形如圖放置,∠B=∠CAD=90°,AB=BC=cm,AC=AD,垂直于CD的直線a從點C出發(fā),以每秒cm的速度沿CD方向勻速平移,與CD交于點E,與折線BAD交于點F;與此同時,點G從點D出發(fā),以每秒1cm的速度沿著DA的方向運動當(dāng)點G落在直線a上,點G與直線a同時停止運動;設(shè)運動時間為t秒(t>0).

          (1)填空:CD=_______cm;

          (2)連接EG、FG,設(shè)△EFG的面積為y,求yt之間的函數(shù)關(guān)系式,并寫出相應(yīng)t的取值范圍;

          (3)是否存在某一時刻t(0<t<2),∠ADC的平分線DMEF于點M,是否存在點MEF的中點?若存在,求此時的t值;若不存在,請說明理由。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(觀察發(fā)現(xiàn)):(1)如圖1,四邊形ABCD和四邊形AEFG都是正方形,且點E在邊AB上,連接DEBG,猜想線段DEBG的數(shù)量關(guān)系和位置關(guān)系.(只要求寫出結(jié)論,不必說出理由)

          (深入探究):(2)如圖2,將圖1中正方形AEFG繞點A逆時針旋轉(zhuǎn)一定的角度,其他條件與觀察發(fā)現(xiàn)中的條件相同,觀察發(fā)現(xiàn)中的結(jié)論是否還成立?請根據(jù)圖2加以說明.

          (拓展應(yīng)用):(3)如圖3,直線l上有兩個動點AB,直線l外有一點動點Q,連接QA,QB,以線段AB為邊在l的另一側(cè)作正方形ABCD,連接QD.隨著動點A、B的移動,線段QD的長也會發(fā)生變化,若QA,QB長分別為3,6保持不變,在變化過程中,線段QD的長是否存在最大值?若存在,求出這個最大值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知是一個直角,作射線,再分別作的平分線.

          1)如圖①,當(dāng)時,求的度數(shù);

          2)如圖②,當(dāng)射線內(nèi)繞點旋轉(zhuǎn)時,始終是的平分線.的大小是否發(fā)生變化,說明理由;

          3)當(dāng)射線外繞點旋轉(zhuǎn)且為鈍角時,仍始終是的平分線,直接寫出的度數(shù)(不必寫過程).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知直線y=4﹣x與反比例函數(shù)y=(m>0,x>0)的圖象交于A,B兩點,且點A的橫坐標(biāo)為1,與x軸,y軸分別相交于C,D兩點.

          (1)求另一個交點B的坐標(biāo);

          (2)利用函數(shù)圖象求關(guān)于x的不等式4﹣x<的解集;

          (3)求三角形AOB的面積.

          查看答案和解析>>

          同步練習(xí)冊答案