日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.
          探究1:如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,通過分析發(fā)現(xiàn)∠BOC=90°+,理由如下:
          ∵BO和CO分別是∠ABC和∠ACB的角平分線


          又∵∠ABC+∠ACB=180°-∠A

          ∴∠BOC=180°-(∠1+∠2)=180°-(90°-∠A)
          =
          探究2:如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關(guān)系?請說明理由.
          探究3:如圖3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,則∠BOC與∠A有怎樣的關(guān)系?(只寫結(jié)論,不需證明)
          結(jié)論:______.

          【答案】分析:(1)根據(jù)提供的信息,根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,用∠A與∠1表示出∠2,再利用∠O與∠1表示出∠2,然后整理即可得到∠BOC與∠O的關(guān)系;
          (2)根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和以及角平分線的定義表示出∠OBC與∠OCB,然后再根據(jù)三角形的內(nèi)角和定理列式整理即可得解.
          解答:解:(1)探究2結(jié)論:∠BOC=∠A,
          理由如下:
          ∵BO和CO分別是∠ABC和∠ACD的角平分線,
          ∴∠1=∠ABC,∠2=∠ACD,
          又∵∠ACD是△ABC的一外角,
          ∴∠ACD=∠A+∠ABC,
          ∴∠2=(∠A+∠ABC)=∠A+∠1,
          ∵∠2是△BOC的一外角,
          ∴∠BOC=∠2-∠1=∠A+∠1-∠1=∠A;

          (2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),
          ∠BOC=180°-∠0BC-∠OCB,
          =180°-(∠A+∠ACB)-(∠A+∠ABC),
          =180°-∠A-(∠A+∠ABC+∠ACB),
          結(jié)論∠BOC=90°-∠A.
          點評:本題考查了三角形的外角性質(zhì)與內(nèi)角和定理,熟記三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和是解題的關(guān)鍵,讀懂題目提供的信息,然后利用提供信息的思路也很重要.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.
          探究1:如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,通過分析發(fā)現(xiàn)∠BOC=90°+
          1
          2
          ∠A
          ,理由如下:
          ∵BO和CO分別是∠ABC和∠ACB的角平分線
          ∠1=
          1
          2
          ∠ABC,∠2=
          1
          2
          ∠ACB

          ∠1+∠2=
          1
          2
          (∠ABC+∠ACB)

          又∵∠ABC+∠ACB=180°-∠A
          ∠1+∠2=
          1
          2
          (180 °-∠A)=90°-
          1
          2
          ∠A

          ∴∠BOC=180°-(∠1+∠2)=180°-(90°-
          1
          2
          ∠A)
          =90°+
          1
          2
          ∠A

          探究2:如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關(guān)系?請說明理由.
          探究3:如圖3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,則∠BOC與∠A有怎樣的關(guān)系?(只寫結(jié)論,不需證明)
          結(jié)論:
           

          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾的探究片段,完成所提出的問題.
          探究1:如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,通過分析發(fā)現(xiàn)∠BOC={90°}+
          1
          2
          ∠A,理由如下:
          ∵BO和CO分別是∠ABC和∠ACB的角平分線,
          ∴∠1=
          1
          2
          ∠ABC,∠2=
          1
          2
          ∠ACB
          ∴∠1+∠2=
          1
          2
          (∠ABC+∠ACB)=
          1
          2
          (180°-∠A)=90°-
          1
          2
          ∠A
          ∴∠BOC=180°-(∠1+∠2)=180°-(90°-
          1
          2
          ∠A)=90°+
          1
          2
          ∠A
          (1)探究2:如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關(guān)系?請說明理由.
          (2)探究3:如圖3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,則∠BOC與∠A有怎樣的關(guān)系?(直接寫出結(jié)論)
          (3)拓展:如圖4,在四邊形ABCD中,O是∠ABC與∠DCB的平分線BO和CO的交點,則∠BOC與∠A+∠D有怎樣的關(guān)系?(直接寫出結(jié)論)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.

          探究1:如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,分析發(fā)現(xiàn)∠BOC=90°+
          1
          2
          ∠A,理由如下:
          ∵BO和CO分別是∠ABC,∠ACB的角平分線
          ∴∠1+∠2=
          1
          2
          (∠ABC+∠ACB)=
          1
          2
          (180°-∠A)=90°-
          1
          2
          ∠A
          ∴∠BOC=180°-(∠1+∠2)=180°-(90°-
          1
          2
          ∠A)=90°+
          1
          2
          ∠A
          (1)探究2:如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關(guān)系?請說明理由.
          (2)探究3:如圖3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,則∠BOC與∠A有怎樣的關(guān)系?(直接寫出結(jié)論)
          (3)拓展:如圖4,在四邊形ABCD中,O是∠ABC與∠DCB的平分線BO和CO的交點,則∠BOC與∠A+∠D有怎樣的關(guān)系?(直接寫出結(jié)論)
          (4)運(yùn)用:如圖5,五邊形ABCDE中,∠BCD、∠EDC的外角分別是∠FCD、∠GDC,CP、DP分別平分∠FCD和∠GDC且相交于點P,若∠A=140°,∠B=120°,∠E=90°,則∠CPD=
          95
          95
          度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2015屆江蘇省揚(yáng)州市邗江區(qū)七年級下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

          認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.

          探究1:如圖1,在中,的平分線的交點,分析發(fā)現(xiàn),理由如下: ∵分別是,的角平分線

          (1)探究2:如圖2中, 與外角的平分線的交點,試分析有怎樣的關(guān)系?請說明理由.

          (2)探究3: 如圖3中,是外角與外角的平分線的交點,則有怎樣的關(guān)系?(直接寫出結(jié)論)

          (3)拓展:如圖4,在四邊形ABCD中,O是∠ABC與∠DCB的平分線BO和CO的交點,則∠BOC與∠A+∠D有怎樣的關(guān)系?(直接寫出結(jié)論)

          (4)運(yùn)用:如圖5,五邊形ABCDE中,∠BCD、∠EDC的外角分別是∠FCD、∠GDC,CP、DP分別平分∠FCD和∠GDC且相交于點P,若∠A=140°,∠B=120°,∠E=90°,則∠CPD=_____度.

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2012年北京石景山區(qū)中考模擬數(shù)學(xué)卷 題型:解答題

          認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾的探究片段,完成所提出的問題.

          探究如圖11-1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,通過分析發(fā)現(xiàn)∠BOC=90°+,理由如下:

          ∵BO和CO分別是∠ABC和∠ACB的角平分線

          1.如圖11-2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關(guān)系?請說明理由.

          2.如圖11-3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,則∠BOC與∠A有怎樣的關(guān)系?(只寫結(jié)論,不需證明)

          結(jié)論:                                                            .

           

          查看答案和解析>>

          同步練習(xí)冊答案