日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,圓錐的側(cè)面積為15π,底面積半徑為3,則該圓錐的高AO為(  )
          A.3B.4C.5D.15
          B

          試題分析:要求圓錐的高,關(guān)鍵是求出圓錐的母線長(zhǎng),即圓錐側(cè)面展開圖中的扇形的半徑.已知圓錐的底面半徑就可求得底面圓的周長(zhǎng),即扇形的弧長(zhǎng),已知扇形的面積和弧長(zhǎng)就可求出扇形的半徑,即圓錐的高.
          解:由題意知:展開圖扇形的弧長(zhǎng)是2×3π=6π,
          設(shè)母線長(zhǎng)為L(zhǎng),則有×6πL=15π,
          解得:L=5,
          ∵由于母線,高,底面半徑正好組成直角三角形,
          ∴在直角△AOC中高AO==4.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知AB,AC分別是⊙O的直徑和弦,點(diǎn)G為上一點(diǎn),GE⊥AB,垂足為點(diǎn)E,交AC于點(diǎn)D,過點(diǎn)C的切線與AB的延長(zhǎng)線交于點(diǎn)F,與EG的延長(zhǎng)線交于點(diǎn)P,連接AG.
          (1)求證:△PCD是等腰三角形;
          (2)若點(diǎn)D為AC的中點(diǎn),且∠F=30°,BF=2,求△PCD的周長(zhǎng)和AG的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,AB是⊙O的直徑,點(diǎn)E是上的一點(diǎn),∠DBC=∠BED.
          (1)求證:BC是⊙O的切線;
          (2)已知AD=3,CD=2,求BC的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知AB是半圓O的直徑,點(diǎn)C是半圓O上的動(dòng)點(diǎn),點(diǎn)D是線段AB延長(zhǎng)線上的動(dòng)點(diǎn),在運(yùn)動(dòng)過程中,保持CD=OA.
          (1)當(dāng)直線CD與半圓O相切時(shí)(如圖①),求∠ODC的度數(shù);
          (2)當(dāng)直線CD與半圓O相交時(shí)(如圖②),設(shè)另一交點(diǎn)為E,連接AE,若AE∥OC,
          ①AE與OD的大小有什么關(guān)系?為什么?
          ②求∠ODC的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,點(diǎn)O在邊長(zhǎng)為8的正方形ABCD的AD邊上運(yùn)動(dòng)(4<C)A<8),以O(shè)為圓心,OA長(zhǎng)為半徑作圓,交CD于點(diǎn)E,連接OE、AE,過點(diǎn)E作直線EF交BC于 點(diǎn)F,且∠CEF=2∠DAE.
          (1)求證:直線EF為⊙O的切線;
          (2)在點(diǎn)O的運(yùn)動(dòng)過程中,設(shè)DE=x,解決下列問題:
          ①求OD·CF的最大值,并求此時(shí)半徑的長(zhǎng);
          ②試猜想并證明△CEF的周長(zhǎng)為定值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖是公園的路線圖,⊙O1,⊙O2,⊙O兩兩相切,點(diǎn)A,B,O分別是切點(diǎn),甲乙二人騎自行車,同時(shí)從點(diǎn)A出發(fā),以相同的速度,甲按照“圓”形線行駛,乙行駛“8字型”線路行駛.若不考慮其他因素,結(jié)果先回到出發(fā)點(diǎn)的人是( 。
          A.甲B.乙C.甲乙同時(shí)D.無(wú)法判定

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          兩個(gè)圓的半徑分別為4cm和3cm,圓心距是6cm,則這兩個(gè)圓的位置關(guān)系是:           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,點(diǎn)C為⊙O的直徑AB上一動(dòng)點(diǎn),AB=2,過點(diǎn)C作DE⊥AB交⊙O于點(diǎn)D、E,連結(jié)AD,AE. 當(dāng)點(diǎn)C在AB上運(yùn)動(dòng)時(shí),設(shè)AC的長(zhǎng)為x,△ADE的面積為y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(   )

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,⊙O與Rt△ABC的斜邊AB相切于點(diǎn)D,與直角邊AC相交于點(diǎn)E,且DE∥BC.已知AE=2,AC=3,BC=6,則⊙O的半徑是

          A.3         B.2       C.2       D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案