【題目】如圖1,拋物線y=﹣與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,連接AC、BC.
(1)求線段AC的長(zhǎng);
(2)如圖2,E為拋物線的頂點(diǎn),F為AC上方的拋物線上一動(dòng)點(diǎn),M、N為直線AC上的兩動(dòng)點(diǎn)(M在N的左側(cè)),且MN=4,作FP⊥AC于點(diǎn)P,FQ∥y軸交AC于點(diǎn)Q.當(dāng)△FPQ的面積最大時(shí),連接EF、EN、FM,求四邊形ENMF周長(zhǎng)的最小值.
(3)如圖3,將△BCO沿x軸負(fù)方向平移個(gè)單位后得△B'C'O',再將△B'C'O'繞點(diǎn)O'順時(shí)針旋轉(zhuǎn)α度,得到△B″C″O'(其中0°<α<180°),旋轉(zhuǎn)過(guò)程中直線B″C″與直線AC交于點(diǎn)G,與x軸交于點(diǎn)H,當(dāng)△AGH是等腰三角形時(shí),求α的度數(shù).
【答案】(1)6(2)(3)α的值為15°或60°或105°或150°
【解析】
(1)根據(jù)拋物線的解析式求出A,C兩點(diǎn)坐標(biāo),可得OA=3,OC=3,利用勾股定理即可解決問(wèn)題.
(2)如圖2﹣1中,延長(zhǎng)FQ交OA于D.設(shè)F(m,﹣ m2﹣
m+3),構(gòu)建二次函數(shù)求出FQ的值最大時(shí)的點(diǎn)F的坐標(biāo),如圖2﹣2中,作FF′∥AC,使得FF′=MN=4,作點(diǎn)F′關(guān)于直線AC的對(duì)稱點(diǎn)F″,連接FF″交直線AC于點(diǎn)M,連接FM,EN,EF,此時(shí)四邊形ENMF的周長(zhǎng)最短.再求出點(diǎn)M.N的坐標(biāo)即可解決問(wèn)題.
(3)分四種情形分別畫出圖象求解即可.
(1)由題意:A(﹣3,0),B(
,0),C(0,3),
∴OA=3,OC=3,
∴AC==6.
(2)如圖2﹣1中,延長(zhǎng)FQ交OA于D.設(shè)F(m,﹣ m2﹣
m+3),
∵tan∠CAO==
,
∴∠CAO=30°,∵FQ∥y軸,FP⊥AC,
∴∠ADQ=∠FPQ=90°,
∴∠AQD=∠FQP=60°,
∴當(dāng)FQ最大時(shí),△FPQ的面積最大,
∵直線AC的解析式為y=x+3,
∴Q(m, m+3),
∴FQ=﹣m2﹣
m+3﹣
m﹣3=﹣
m2﹣
m=﹣
(m+
)2+
,
∵﹣<0,
∴m=﹣,FQ的值最大,即△PFQ的面積最大,此時(shí)F(﹣
,
),
如圖2﹣2中,作FF′∥AC,使得FF′=MN=4,作點(diǎn)F′關(guān)于直線AC的對(duì)稱點(diǎn)F″,連接FF″交直線AC于點(diǎn)M,連接FM,EN,EF,此時(shí)四邊形ENMF的周長(zhǎng)最短.
由題意點(diǎn)F向右平移2個(gè)單位,再向上平移2個(gè)單位得到點(diǎn)F′(
,
),
∵F″與F′關(guān)于直線AC對(duì)稱,
∴F″(,
),
∴M(),N(
),
∵拋物線頂點(diǎn)E(﹣,4),
∴FM=,EN=
=
,EF=
=
,
∴四邊形ENMF的周長(zhǎng)的最小值為.
(3)①如圖3﹣1中,當(dāng)AG=AH時(shí)
∵AG=AH,∠HAG=30°,
∴∠AHG=∠AGH=75°,
∵∠AHG=∠HO′B″+∠O′B″H,∠O′B″H=60°
∴∠HO′B″=15°,
∴α=15°
②如圖3﹣2中,當(dāng)HA=HG時(shí),
∵AG∥O′C″,
∴∠HO′C″=∠GAO=30°,
∴∠HO′B″=60°,
∴α=60°.
③如圖3﹣3中,當(dāng)AG=AH時(shí),
∵∠AGH=∠AHG=15°,
∵∠O′C″B″=∠C″O′H+∠AHG,
∴∠HO′C″=15°,
∴∠HO′B″=105°,
∴α=105°.
④如圖3﹣4中,當(dāng)GA=GH時(shí),同法可得∠OO′B″=150°,α=150°.
綜上所述,滿足條件的α的值為15°或60°或105°或150°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《城鎮(zhèn)污水處理廠污染物排放標(biāo)準(zhǔn)》中硫化物的排放標(biāo)準(zhǔn)為.某污水處理廠在自查中發(fā)現(xiàn),所排污水中硫化物濃度超標(biāo),因此立即整改,并開始實(shí)時(shí)監(jiān)測(cè).據(jù)監(jiān)測(cè),整改開始第60小時(shí)時(shí),所排污水中硫化物的濃度為
;從第60小時(shí)開始,所排污水中硫化物的濃度
是監(jiān)測(cè)時(shí)間
(小時(shí))的反比例函數(shù),其圖象如圖所示。
(1)求與
的函數(shù)關(guān)系式;
(2)整改開始第100小時(shí)時(shí),所排污水中硫化物濃度為_____;
(3)按規(guī)定所排污水中硫化物的濃度不超過(guò)時(shí),才能解除實(shí)時(shí)監(jiān)測(cè),此次整改實(shí)時(shí)監(jiān)測(cè)的時(shí)間至少為多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)學(xué)生蕩秋千,秋千鏈子的長(zhǎng)度為,當(dāng)秋千向兩邊擺動(dòng)時(shí),擺角(指擺到最高位置時(shí)的秋千與鉛垂線的夾角)恰好是
,則它擺至最高位置時(shí)與其擺至最低位置時(shí)的高度之差為 ____m.(結(jié)果可以保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=2x+2與y軸交于A點(diǎn),與反比例函數(shù)(x>0)的圖象交于點(diǎn)M,過(guò)M作MH⊥x軸于點(diǎn)H,且tan∠AHO=2.
(1)求k的值;
(2)點(diǎn)N(a,1)是反比例函數(shù)(x>0)圖象上的點(diǎn),在x軸上是否存在點(diǎn)P,使得PM+PN最。咳舸嬖,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自行車遠(yuǎn)動(dòng)員甲準(zhǔn)備參加一項(xiàng)國(guó)際自行車賽事,為此特地騎自行車從A地出發(fā),勻速前往168千米外的B地進(jìn)行拉練.出發(fā)2小時(shí)后,乙發(fā)現(xiàn)他忘了帶某訓(xùn)練用品,于是馬上騎摩托車從A地出發(fā)勻速去追甲送該用品.已知乙騎摩托車的速度比甲騎自行車的速度每小時(shí)多30千米,但摩托車行駛一小時(shí)后突遇故障,修理15分鐘后,又上路追甲,但速度減小了,乙追上甲交接了訓(xùn)練用品(交接時(shí)間忽略不計(jì)),隨后立即以修理后的速度原路返回,甲繼續(xù)以原來(lái)的速度騎行直至B地.如圖表示甲、乙兩人之間的距離S(千米)與甲騎行的時(shí)間t(小時(shí))之間的部分圖象,則當(dāng)甲達(dá)到B地時(shí),乙距離A地_____千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一天晚上,李明利用燈光下的影子長(zhǎng)來(lái)測(cè)量一路燈D的高度.如圖,當(dāng)在點(diǎn)A處放置標(biāo)桿時(shí),李明測(cè)得直立的標(biāo)桿高AM與影子長(zhǎng)AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點(diǎn)B處放置同一個(gè)標(biāo)桿,測(cè)得直立標(biāo)桿高BN的影子恰好是線段AB,并測(cè)得AB=1.2m,已知標(biāo)桿直立時(shí)的高為1.8m,求路燈的高CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖中的方格圖均是由邊長(zhǎng)為1的小正方形組成的,現(xiàn)通過(guò)圖形變換將圖1中陰影部分的圖形割補(bǔ)成一個(gè)正方形。其思想方法是:由于要拼成的正方形的面積為“5”(由5個(gè)小正方形組成),則正方形的邊長(zhǎng)為,而
=
。因此,具體做法是:①連結(jié)A1A3、A1A5;②將△A1A2A3繞A3沿順時(shí)針方向旋轉(zhuǎn)90°;③將△A1A5A6繞A5沿逆時(shí)針方向旋轉(zhuǎn)90°;④將小正方形A1A6A7A8先向左平移2個(gè)單位,再向上平移1個(gè)單位。圖中四邊形A1A3A4A5即是所求作的正方形。仿照此方法將圖2中的陰影部分的圖形割補(bǔ)成正方形。(要求:直接在圖上畫出圖形,并寫出一種具體做法。)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為6,E,F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=MF;
(2)若AE=2,求FC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司從2009年開始投入技術(shù)改造資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的生產(chǎn)成本不斷降低,具體數(shù)據(jù)如表:
年度 | 2009 | 2010 | 2011 | 2012 |
投入技改資金x(萬(wàn)元) | 2.5 | 3 | 4 | 4.5 |
產(chǎn)品成本y(萬(wàn)元/件) | 7.2 | 6 | 4.5 | 4 |
(1)試判斷:從上表中的數(shù)據(jù)看出,y與x符合你學(xué)過(guò)的哪個(gè)函數(shù)模型?請(qǐng)說(shuō)明理由,并寫出它的解析式.
(2)按照上述函數(shù)模型,若2013年已投入技改資金5萬(wàn)元
①預(yù)計(jì)生產(chǎn)成本每件比2012年降低多少元?
②如果打算在2013年把每件產(chǎn)品的成本降低到3.2萬(wàn)元,則還需投入技改資金多少萬(wàn)元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com