日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,AB是⊙O的直徑,點(diǎn)C是 的中點(diǎn),∠COB=60°,過(guò)點(diǎn)C作CE⊥AD,交AD的延長(zhǎng)線于點(diǎn)E

          (1)求證:CE為⊙O的切線;
          (2)判斷四邊形AOCD是否為菱形?并說(shuō)明理由.

          【答案】
          (1)證明:

          連接OD,如圖,

          ∵C是 的中點(diǎn),

          ∴∠BOC=∠COD=60°,

          ∴∠AOD=60°,且OA=OD,

          ∴△AOD為等邊三角形,

          ∴∠EAB=∠COB,

          ∴OC∥AE,

          ∴∠OCE+∠AEC=180°,

          ∵CE⊥AE,

          ∴∠OCE=180°﹣90°=90°,即OC⊥EC,

          ∵OC為圓的半徑,

          ∴CE為圓的切線


          (2)解:

          四邊形AOCD是菱形,理由如下:

          由(1)可知△AOD和△COD均為等邊三角形,

          ∴AD=AO=OC=CD,

          ∴四邊形AOCD為菱形.


          【解析】(1)連接OD,可證明△AOD為等邊三角形,可得到∠EAO=∠COB,可證明OC∥AE,可證得結(jié)論;(2)利用△OCD和△AOD都是等邊三角形可證得結(jié)論.
          【考點(diǎn)精析】通過(guò)靈活運(yùn)用菱形的判定方法和切線的判定定理,掌握任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形;切線的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線即可以解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某閉合電路中,其兩端電壓恒定,電流I(A)與電阻R(Ω)圖象如圖所示,回答問(wèn)題:

          (1)寫出電流I與電阻R之間的函數(shù)解析式.
          (2)如果一個(gè)用電器的電阻為5Ω,其允許通過(guò)的最大電流是1A,那么這個(gè)用電器接在這個(gè)閉合電路中,會(huì)不會(huì)燒毀?說(shuō)明理由.
          (3)若允許的電流不超過(guò)4A時(shí),那么電阻R的取值應(yīng)該控制在什么范圍?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知二次函數(shù)y=﹣x2+2x+m.
          (1)如果二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求m的取值范圍;
          (2)如圖,二次函數(shù)的圖象過(guò)點(diǎn)A(3,0),與y軸交于點(diǎn)B,直線AB與這個(gè)二次函數(shù)圖象的對(duì)稱軸交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

          (3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,ABC中,BAC=90°,AB=AC,ADBC,垂足是D,AE平分BAD,交BC于點(diǎn)E.在ABC外有一點(diǎn)F,使FAAE,F(xiàn)CBC.

          (1)求證:BE=CF;

          (2)在AB上取一點(diǎn)M,使BM=2DE,連接MC,交AD于點(diǎn)N,連接ME.求證:MEBC;DE=DN.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】先化簡(jiǎn),再求值: ,其中x的值從不等式組的整數(shù)解中選取.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:如圖,四邊形ABCD,AD∥BC,AB=4,BC=6,CD=5AD=3.

          求:四邊形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知△ABC與△CDE均是等邊三角形,點(diǎn)B、CE在同一條直線上,AEBD交于點(diǎn)O,AECD交于點(diǎn)GACBD交于點(diǎn)F,連接OCFG,則下列結(jié)論:AE=BD;②AG=BF;③FGBE;④∠BOC=∠EOC.其中正確結(jié)論的個(gè)數(shù)為

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】拋物線y=x2+bx+c過(guò)點(diǎn)(2,﹣2)和(﹣1,10),與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).
          (1)求拋物線的解析式.
          (2)求△ABC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】近年來(lái),共享單車逐漸成為高校學(xué)生喜愛(ài)的“綠色出行”方式之一,自2016年國(guó)慶后,許多高校均投放了使用手機(jī)支付就可隨取隨用的共享單車.某高校為了解本校學(xué)生出行使用共享單車的情況,隨機(jī)調(diào)查了某天部分出行學(xué)生使用共享單車的情況,并整理成如下統(tǒng)計(jì)表.

          使用次數(shù)

          0

          1

          2

          3

          4

          5

          人數(shù)

          11

          15

          23

          28

          18

          5

          (1)這天部分出行學(xué)生使用共享單車次數(shù)的中位數(shù)是   ,眾數(shù)是   ,該中位數(shù)的意義是   

          (2)這天部分出行學(xué)生平均每人使用共享單車約多少次?(結(jié)果保留整數(shù))

          (3)若該校某天有1500名學(xué)生出行,請(qǐng)你估計(jì)這天使用共享單車次數(shù)在3次以上(含3次)的學(xué)生有多少人?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案