日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在△ABC中,AB=BC=2,高BE=
          3
          ,在BC邊的延長線上取一點D,使CD=3.
          (1)現(xiàn)有一動點P由A沿AB移動,設(shè)AP=t,S△PCD=S,求S與t之間的關(guān)系式及自變量t的取值范圍.
          (2)在(1)的條件下,當t=
          1
          3
          時,過點C作CH⊥PD于H,設(shè)K=7CH:9PD.求證:關(guān)于x的二次函數(shù)y=-x2-(10k-
          3
          )x+2k
          的圖象與x軸的兩個交點關(guān)于原點對稱.
          (3)在(1)的條件下,是否存在正實數(shù)t,使PD邊上的高CH=
          1
          2
          CD
          ?如果存在,請求出t的值;如果不存在,請說明理由.
          (1)過點P作PF⊥BD于點F.
          ∵AB=BC=2,高BE=
          3

          ∴由銳角三角函數(shù),得∠A=60°,
          ∴△ABC是等邊三角形,
          ∴∠B=60°,
          ∴∠BPF=30°.
          ∵AP=t,
          ∴PB=2-t,
          ∴PF=
          3
          2
          (2-t),
          ∴S=
          1
          2
          ×3×
          3
          2
          (2-t),
          =-
          3
          3
          4
          t+
          3
          3
          2
          (0≤t≤2);

          (2)證明:∵t=
          1
          3
          ,
          ∴PB=2-
          1
          3
          =
          5
          3

          ∴PB=
          5
          6
          ,PF=
          5
          3
          6
          ,CF=
          7
          6

          ∴DF=3+
          7
          6
          =
          25
          6
          ,
          在Rt△PFD中由勾股定理得
          DP=
          (
          5
          6
          3
          )
          2
          +(
          25
          6
          )
          2

          =
          10
          7
          6
          ,
          在△PCD中
          1
          2
          ×
          5
          3
          6
          ×3=
          1
          2
          ×
          10
          7
          6
          CH,
          解得CH=
          3
          21
          14

          K=
          3
          21
          14
          ×7
          10
          7
          6
          ×9
          =
          3
          10
          ,
          y=-x2-(10×
          3
          10
          -
          3
          )x+2×
          3
          10

          y=-x2+
          3
          5
          ,
          當y=0時,解得x=±
          5
          3
          5
          ,
          ∴拋物線與x軸的兩個交點坐標分別為:(
          5
          3
          5
          ,0)或(-
          5
          3
          5
          ,0)
          ,
          ∴原二次函數(shù)的圖象與x軸的交點關(guān)于原點對稱;

          (3)不存在正實數(shù)P.
          ∵CH⊥DP,且CH=
          1
          2
          CD

          ∴∠D=30°
          ∴DP=2PF=(2-t)
          3
          ,DF=2-
          2-t
          2
          +3=
          t+8
          2

          由勾股定理得
          [(2-t)
          3
          ]2=(
          t+8
          2
          )2+(
          (2-t)
          3
          2
          )2

          解得t1=7不符合題意應(yīng)舍去.
          t2=-
          1
          2
          不符合題意應(yīng)舍去.
          ∴當CH=1.5時,求出的t的值不滿足題意要求.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,直線l經(jīng)過A(3,0),B(0,3)兩點,且與二次函數(shù)y=x2+1的圖象,在第一象限內(nèi)相交于點C.求:
          (1)△AOC的面積;
          (2)二次函數(shù)圖象的頂點與點A、B組成的三角形的面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          已知拋物線y=ax2+bx經(jīng)過點A(-3,-3)和點P(x,0),且x≠0.
          (1)若該拋物線的對稱軸經(jīng)過點A,如圖,請通過觀察圖象,指出此時y的最______值,值是______;
          (2)若x=-4,求拋物線的解析式;
          (3)請觀察圖象:當x______,y隨x的增大而增大;當x______時,y>0;當x______時,y<0.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標為(-3,0),與y軸交于點C,點D(-2,-3)在拋物線上.
          (1)求拋物線的解析式;
          (2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
          (3)點G拋物線上的動點,在x軸上是否存在點E,使B、D、E、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的E點坐標;如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:填空題

          如圖,一次函數(shù)y=-2x的圖象與二次函數(shù)y=-x2+3x圖象的對稱軸交于點B.
          (1)寫出點B的坐標______;
          (2)已知點P是二次函數(shù)y=-x2+3x圖象在y軸右側(cè)部分上的一個動點,將直線y=-2x沿y軸向上平移,分別交x軸、y軸于C、D兩點.若以CD為直角邊的△PCD與△OCD相似,則點P的坐標為______.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖所示,用50m長的籬笆圍成中間有一道籬笆墻的養(yǎng)殖場,設(shè)它的長為xm,養(yǎng)殖場的一邊靠墻.
          (1)要使養(yǎng)殖場的面積最大,養(yǎng)殖場的長應(yīng)為多少米?
          (2)若中間有n(n是大于1的整數(shù))道籬笆隔墻,要使養(yǎng)殖場面積最大,養(yǎng)殖場的長應(yīng)為多少米?比較(1)和(2),你能得出什么結(jié)論?

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          已知:點P(a+1,a-1)關(guān)于x軸的對稱點在反比例函數(shù)y=-
          8
          x
          (x>0)的圖象上,y關(guān)于x的函數(shù)y=k2x2-(2k+1)x+1的圖象與坐標軸只有兩個不同的交點A﹑B,求P點坐標和△PAB的面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:單選題

          如圖,點A,B的坐標分別為(1,4)和(4,4),拋物線y=a(x-m)2+n的頂點在線段AB上運動(拋物線隨頂點一起平移),與x軸交于C、D兩點(C在D的左側(cè)),點C的橫坐標最小值為-3,則點D的橫坐標最大值為( 。
          A.-3B.1C.5D.8

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,在矩形ABCD中,AB=6米,BC=8米,動點P以2米/秒的速度從點A出發(fā),沿AC向點C移動,同時動點Q以1米/秒的速度從點C出發(fā),沿CB向點B移動,設(shè)P、Q兩點移動t秒(0<t<5)后,四邊形ABQP的面積為S米2
          (1)求面積S與時間t的關(guān)系式;
          (2)在P、Q兩點移動的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時點P的位置;若不能,請說明理由.

          查看答案和解析>>

          同步練習冊答案