日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】學(xué)本課堂的實踐中,王老師經(jīng)常讓學(xué)生以問題為中心進(jìn)行自主、合作、探究學(xué)習(xí).

          (課堂提問)王老師在課堂中提出這樣的問題:如圖1,在RtABC中,∠ACB=90°,∠BAC=30°,那么BCAB有怎樣的數(shù)量關(guān)系?

          (互動生成)經(jīng)小組合作交流后,各小組派代表發(fā)言.

          1)小華代表第3小組發(fā)言:AB=2BC. 請你補(bǔ)全小華的證明過程.

          證明:把ABC沿著AC翻折,得到ADC.

          ∴∠ACD=ACB=90°,

          ∴∠BCD=ACD+ACB=90°+90°=180°,

          即:點B、C、D共線.

          (請在下面補(bǔ)全小華的證明過程)

          2)受到第3小組翻折的啟發(fā),小明代表第2小組發(fā)言:如圖2,在ABC中,如果把條件ACB=90°”改為ACB=135°”,保持BAC=30°”不變,若BC=1,求AB的長.

          (能力遷移)我們發(fā)現(xiàn),翻折可以探索圖形性質(zhì),請利用翻折解決下面問題.

          如圖3,點DABC內(nèi)一點,AD=AC,∠BAD=CAD=20°,∠ADB+ACB=210°,則AD、DB、BC三者之間的數(shù)量關(guān)系是 .

          (課后拓展)如圖4,在四邊形ABCD中,∠BCD=45°,∠BAD=90°,∠ADB=CDB=60°,且AC=1,

          ABD的周長為 .

          【答案】(1)見解析;(2;能力遷移:;課后拓展:.

          【解析】

          1)根據(jù)提示證明出ABD為等邊三角形即可說明BCAB的關(guān)系;

          2)過點BAC邊的垂線,交AC的延長線于點D,設(shè)BD=x,則CD=BC=x,解出x即可;

          能力遷移:把△ABDAB邊翻折得到△AEB,連接ED,EC,先通過角度轉(zhuǎn)換得到∠EBC=90°,在證明BC=BD,EC=AD,即可求出AD、DB、BC三邊的關(guān)系;

          課后拓展:作BD⊥CD于點E,作CF垂直AD的延長線于點F,設(shè)AD=xBD=2AD=2x,然后表示出AF,CF邊建立方程解出x即可.

          1)證明:把△ABC沿著AC翻折,得到△ADC.

          ∴∠ACD=ACB=90°,

          ∴∠BCD=ACD+ACB=90°+90°=180°,

          即:點BC、D共線,

          AB=AD

          ∠BAC=30°,

          ∠ABC=60°

          △ABD為等邊三角形,

          ∴AB=BD=2BC

          2)過點BAC邊的垂線,交AC的延長線于點D,

          ∵∠ACB=135°,

          ∠BCD=45°,

          ∠BDC=90°,BC=1,

          設(shè)BD=x,則CD=BC=x,

          ,解得:

          ∠BAC=30°,

          AB=2BD=;

          能力遷移:

          △ABDAB邊翻折得到△AEB,連接ED,EC

          ∵∠BAD=CAD=20°,

          ∠EAB=20°

          ∠EAC=60°,

          ∠ACB+∠ADB=210°∠AEB=∠ADB,

          ∠ACB=∠AEB=210°,

          ∠EBC=360°-210°-60°=90°,

          AD=AC,AE=AD

          ∴AE=AC,

          △AEC為等邊三角形,

          EC=AE=AD

          Rt△EBC中,,

          BC=BD,EC=AD,

          課后拓展:

          BD⊥CD于點E,作CF垂直AD的延長線于點F,

          ∵∠BAD=90°,∠ADB=CDB=60°,

          △BAD≌△BED,

          ∠BCD=45°

          BE=CE,

          設(shè)AD=x

          BD=2AD=2x

          ,

          EC=EB=AB=

          DC=,

          ∠FDC=60°∠ECD=30°,

          DF=

          ,

          ,

          AC=1

          Rt△AFC中,

          ,解得:,

          AD=

          DB=,

          △ABD的周長為:.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如下圖,在平面直角坐標(biāo)系中,對進(jìn)行循環(huán)往復(fù)的軸對稱變換,若原來點A坐標(biāo)是,則經(jīng)過第2019次變換后所得的A點坐標(biāo)是________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】兩家超市同時采取通過搖獎返現(xiàn)金搞促銷活動,凡在超市購物滿100元的顧客均可以參加搖獎一次.小明和小華對兩家超市搖獎的50名顧客獲獎情況進(jìn)行了統(tǒng)計并制成了圖表(如圖)

          獎金金額

          獲獎人數(shù)

          20

          15

          10

          5

          商家甲超市

          5

          10

          15

          20

          乙超市

          2

          3

          20

          25

          (1)在甲超市搖獎的顧客獲得獎金金額的中位數(shù)是   ,在乙超市搖獎的顧客獲得獎金金額的眾數(shù)是   ;

          (2)請你補(bǔ)全統(tǒng)計圖1;

          (3)請你分別求出在甲、乙兩超市參加搖獎的50名顧客平均獲獎多少元?

          (4)圖2是甲超市的搖獎轉(zhuǎn)盤,黃區(qū)20元、紅區(qū)15元、藍(lán)區(qū)10元、白區(qū)5元,如果你購物消費了100元后,參加一次搖獎,那么你獲得獎金10元的概率是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小東從A地出發(fā)以某一速度向B地走去,同時小明從B地出發(fā)以另一速度向A地走去,y1,y2分別表示小東、小明離B地的距離y(km)與所用時間x(h)的關(guān)系,如圖所示,根據(jù)圖象提供的信息,回答下列問題:

          (1)試用文字說明交點P所表示的實際意義;

          (2)y1x的函數(shù)關(guān)系式;

          (3)A,B兩地之間的距離及小明到達(dá)A地所需的時間.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,在ABC中,∠ABC和∠ACB的角平分線相交于點P,且PEABPFAC,垂足分別為E、F

          1)求證:PE=PF

          2)若∠BAC=60°,連接AP,求∠EAP的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,對角線AC的垂直平分線分別交AB,CD于點E,F(xiàn),連接AF,CE,如果∠BCE=26°,則∠CAF=_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,中,,的平分線與的垂直平分線交于點,將沿(上,)折疊,點與點恰好重合,則____.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在一筆直的沿湖道路上有A、B兩個游船碼頭,觀光島嶼C在碼頭A北偏東60°的方向,在碼頭B北偏東15°的方向,AB=4km.

          (1)求觀光島嶼C與碼頭A之間的距離(即AC的長);

          (2)游客小明準(zhǔn)備從觀光島嶼C乘船沿湖回到碼頭A或沿CB回到碼頭B,若開往碼頭A、B的游船速度相同,設(shè)開往碼頭A、B所用的時間分別是t1、t2,求的值.(結(jié)果保留根號)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在如圖所示的七邊形ABCDEFG中,∠1、∠2、∠3、∠4 四個角的外角和為180°,5 的外角為60°,BP、DP 分別平分∠ABC、∠CDE,則BPD 的度數(shù)是( 。

          A. 130° B. 120° C. 110° D. 100°

          查看答案和解析>>

          同步練習(xí)冊答案