日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 某小區(qū)為美化環(huán)境準備用1萬元擺設A、B兩種盆景造型100個,其中A盆景造型需甲花6盆、乙花4盆,B 盆景造型需甲花3盆、乙花5盆,現(xiàn)有甲花435盆,乙花460盆.設A盆景造型x個.
          (1)求有多少種A、B盆景造型方案?
          (2)現(xiàn)要將花卉從花圃運往小區(qū)展示區(qū),已知1盆甲花的成本及運費共12元,1盆乙花的成本及運費共10元,求總運費W(元)與A盆景造型x(個)之間的函數(shù)關系式,并確定總費用最小的方案和最少的總費用;
          (3)若按(2)中的最少總費用計算,準備好的1萬元是否夠用?若有剩余,則將剩余的錢全部花完最多還可以買甲、乙兩種花共多少盆?
          【答案】分析:(1)設搭配一個A種造型所需甲種花卉盆數(shù)需要6x,乙種花卉盆數(shù)為4x,搭配B種造型需甲3(100-x),需要乙種花卉5(100-x),可列不等式組求解.
          (2)根據(jù)1盆甲花的成本及運費共12元,1盆乙花的成本及運費共10元,可由此列出關于W的函數(shù)關系求出即可;
          (3)根據(jù)一次函數(shù)的增減性得出答案即可.
          解答:解:(1)設A盆景造型x個,則B盆景造型(100-x)個,
          根據(jù)題意得出:
          ,
          解得:40≤x≤45,
          故A種造型可以為:40個,B種造型則為60個;
          A種造型可以為:41個,B種造型則為59個;
          A種造型可以為:42個,B種造型則為58個;
          A種造型可以為:43個,B種造型則為57個;
          A種造型可以為:44個,B種造型則為56個;
          A種造型可以為:45個,B種造型則為55個;
          故有6種A、B盆景造型方案;

          (2)根據(jù)A盆景造型x個,B盆景造型(100-x)個,
          可以得出:需要甲種花卉盆數(shù)為:[6x+3(100-x)]盆,需要乙種花卉盆數(shù)為:[4x+5(100-x)]盆,
          根據(jù)題意得出:
          W=12×[6x+3(100-x)]+10×[4x+5(100-x)],
          =26x+8600,
          根據(jù)y隨x的增大而增大,得出x=40時,W最小為:W=26×40+8600=9640元;

          (3)若按(2)中的最少總費用計算,準備好的1萬元夠用,
          剩余10000-9640=360(元),
          根據(jù)1盆甲花的成本及運費共12元,1盆乙花的成本及運費共10元,
          當全部用來購買乙花,則可以購買最多:360÷10=36(盆),
          根據(jù)則將剩余的錢全部花完最多還可以買乙種花共36盆.
          當兩種都需要購買時:還要剩余的錢全部花完,則可以購買甲5盆,12×5=60(元),
          可以購買乙:(360-60)÷10=30盆,
          故將剩余的錢全部花完最多還可以買甲、乙兩種花共35盆.
          點評:此題主要考查了一元一次不等式組的應用和一次函數(shù)的增減性應用,根據(jù)實際問題中的條件列出不等式組時,要注意抓住題目中的一些關鍵性詞語,找出等量關系,列出不等方程組是解題關鍵.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          26、如圖是某居民小區(qū)的一塊長為2a米,寬為b米的長方形空地,為了美化環(huán)境,準備在這個長方形的四個頂點處修建一個半徑為a米的扇形花臺,然后在花臺內(nèi)種花,其余種草.如果建造花臺及種花費用每平方米需要資金100元,種草每平方米需要資金50元,那么美化這塊空地共需資金多少元?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          某小區(qū)為美化環(huán)境準備用1萬元擺設A、B兩種盆景造型100個,其中A盆景造型需甲花6盆、乙花4盆,B 盆景造型需甲花3盆、乙花5盆,現(xiàn)有甲花435盆,乙花460盆.設A盆景造型x個.
          (1)求有多少種A、B盆景造型方案?
          (2)現(xiàn)要將花卉從花圃運往小區(qū)展示區(qū),已知1盆甲花的成本及運費共12元,1盆乙花的成本及運費共10元,求總運費W(元)與A盆景造型x(個)之間的函數(shù)關系式,并確定總費用最小的方案和最少的總費用;
          (3)若按(2)中的最少總費用計算,準備好的1萬元是否夠用?若有剩余,則將剩余的錢全部花完最多還可以買甲、乙兩種花共多少盆?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          如圖是某居民小區(qū)的一塊長為2a米,寬為b米的長方形空地,為了美化環(huán)境,準備在這個長方形的四個頂點處修建一個半徑為a米的扇形花臺,然后在花臺內(nèi)種花,其余種草.如果建造花臺及種花費用每平方米需要資金100元,種草每平方米需要資金50元,那么美化這塊空地共需資金多少元?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          某小區(qū)為美化環(huán)境準備用1萬元擺設A、B兩種盆景造型100個,其中A盆景造型需甲花6盆、乙花4盆,B 盆景造型需甲花3盆、乙花5盆,現(xiàn)有甲花435盆,乙花460盆.設A盆景造型x個.
          (1)求有多少種A、B盆景造型方案?
          (2)現(xiàn)要將花卉從花圃運往小區(qū)展示區(qū),已知1盆甲花的成本及運費共12元,1盆乙花的成本及運費共10元,求總運費W(元)與A盆景造型x(個)之間的函數(shù)關系式,并確定總費用最小的方案和最少的總費用;
          (3)若按(2)中的最少總費用計算,準備好的1萬元是否夠用?若有剩余,則將剩余的錢全部花完最多還可以買甲、乙兩種花共多少盆?

          查看答案和解析>>

          同步練習冊答案