日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 我們學(xué)習(xí)了勾股定理后,都知道“勾三、股四、弦五”.
          (1)觀察:3,4,5;5,12,13;7,24,25;…,發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒有間斷過.事實上,勾是三時,股和弦的算式分別是;勾是五時,股和弦的算式分別是.根據(jù)你發(fā)現(xiàn)的規(guī)律,分別寫出勾是七時,股和弦的算式;
          (2)根據(jù)(1)的規(guī)律,請用含n(n為奇數(shù),且n≥3)的代數(shù)式來表示所有這些勾股數(shù)的勾、股、弦,合情猜想它們之間的相等關(guān)系(請寫出兩種),并對其中一種猜想加以證明;
          (3)繼續(xù)觀察4,3,5;6,8,10;8,15,17;…,可以發(fā)現(xiàn)各組的第一個數(shù)都是偶數(shù),且從4起也沒有間斷過.運用類似上述探索的方法,直接用m(m為偶數(shù),且m>4)的代數(shù)式來表示股和弦.
          【答案】分析:(1)根據(jù)推論即可發(fā)現(xiàn):股和弦分別是勾的平方減1的一半和勾的平方加1的一半;
          (2)把(1)中發(fā)現(xiàn)的關(guān)系運用字母表示即可,然后發(fā)現(xiàn)勾、股、弦之間的關(guān)系,并驗證;
          (3)發(fā)現(xiàn):股和弦總是相差為2.主要是考慮勾和股之間的關(guān)系即是勾的一半的平方再減1.
          解答:解:(1);

          (2)當(dāng)n≥3,且n為奇數(shù)時,勾、股、弦分別為:n,
          它們之間的關(guān)系為:(ⅰ)弦-股=1,(ⅱ)勾2+股2=弦2
          如證明(。,弦-股=

          (3)當(dāng)m>4,且m為偶數(shù)時,勾、股、弦分別為:m,,它們的股和弦.
          點評:能夠根據(jù)具體數(shù)字發(fā)現(xiàn)規(guī)律,用字母表示推廣到一般.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          我們學(xué)習(xí)了勾股定理后,都知道“勾三、股四、弦五”.
          (1)觀察:3,4,5;5,12,13;7,24,25;…,發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒有間斷過.事實上,勾是三時,股和弦的算式分別是
          1
          2
          (9-1),
          1
          2
          (9+1)
          ;勾是五時,股和弦的算式分別是
          1
          2
          (25-1),
          1
          2
          (25+1)
          .根據(jù)你發(fā)現(xiàn)的規(guī)律,分別寫出勾是七時,股和弦的算式;
          (2)根據(jù)(1)的規(guī)律,請用含n(n為奇數(shù),且n≥3)的代數(shù)式來表示所有這些勾股數(shù)的勾、股、弦,合情猜想它們之間的相等關(guān)系(請寫出兩種),并對其中一種猜想加以證明;
          (3)繼續(xù)觀察4,3,5;6,8,10;8,15,17;…,可以發(fā)現(xiàn)各組的第一個數(shù)都是偶數(shù),且從4起也沒有間斷過.運用類似上述探索的方法,直接用m(m為偶數(shù),且m>4)的代數(shù)式來表示股和弦.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          同學(xué)們,學(xué)習(xí)了無理數(shù)之后,我們已經(jīng)把數(shù)的領(lǐng)域擴大到了實數(shù)的范圍,這說明我們的知識越來越豐富了!可是,無理數(shù)究竟是一個什么樣的數(shù)呢?下面讓我們在幾個具體的圖形中認識一下無理數(shù).
          (1)如圖①△ABC是一個邊長為2的等腰直角三角形.它的面積是2,把它沿著斜邊的高線剪開拼成如圖②的正方形ABCD,則這個正方形的面積也就等于正方形的面積即為2,則這個正方形的邊長就是
          2
          ,它是一個無理數(shù).

          (2)如圖,直徑為1個單位長度的圓從原點O沿數(shù)軸向右滾動一周,圓上的一點P(滾動時與點O重合)由原點到達點O′,則OO′的長度就等于圓的周長π,所以數(shù)軸上點O′代表的實數(shù)就是
          π
          π
          ,它是一個無理數(shù).

          (3)如圖,在Rt△ABC中,∠C=90°,AC=2,BC=1,根據(jù)勾股定理可求得AB=
          5
          5
          ,它是一個無理數(shù).

          好了,相信大家對無理數(shù)是不是有了更具體的認識了,那么你是也試著在圖形中作出兩個無理數(shù)吧:
          1、你能在6×8的網(wǎng)格圖中(每個小正方形邊長均為1),畫出一條長為
          10
          的線段嗎?

          2、學(xué)習(xí)了實數(shù)后,我們知道數(shù)軸上的點與實數(shù)是一一對應(yīng)的關(guān)系.那么你能在數(shù)軸上找到表示 -
          5
          的點嗎?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          我們學(xué)習(xí)了勾股定理后,都知道“勾三、股四、弦五”.
          (1)觀察:3,4,5;5,12,13;7,24,25;…,發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒有間斷過.事實上,勾是三時,股和弦的算式分別是數(shù)學(xué)公式;勾是五時,股和弦的算式分別是數(shù)學(xué)公式.根據(jù)你發(fā)現(xiàn)的規(guī)律,分別寫出勾是七時,股和弦的算式;
          (2)根據(jù)(1)的規(guī)律,請用含n(n為奇數(shù),且n≥3)的代數(shù)式來表示所有這些勾股數(shù)的勾、股、弦,合情猜想它們之間的相等關(guān)系(請寫出兩種),并對其中一種猜想加以證明;
          (3)繼續(xù)觀察4,3,5;6,8,10;8,15,17;…,可以發(fā)現(xiàn)各組的第一個數(shù)都是偶數(shù),且從4起也沒有間斷過.運用類似上述探索的方法,直接用m(m為偶數(shù),且m>4)的代數(shù)式來表示股和弦.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2009年安徽省合肥市壽春中學(xué)一模試卷(解析版) 題型:解答題

          (2012•包河區(qū)一模)我們學(xué)習(xí)了勾股定理后,都知道“勾三、股四、弦五”.
          (1)觀察:3,4,5;5,12,13;7,24,25;…,發(fā)現(xiàn)這些勾股數(shù)的勾都是奇數(shù),且從3起就沒有間斷過.事實上,勾是三時,股和弦的算式分別是;勾是五時,股和弦的算式分別是.根據(jù)你發(fā)現(xiàn)的規(guī)律,分別寫出勾是七時,股和弦的算式;
          (2)根據(jù)(1)的規(guī)律,請用含n(n為奇數(shù),且n≥3)的代數(shù)式來表示所有這些勾股數(shù)的勾、股、弦,合情猜想它們之間的相等關(guān)系(請寫出兩種),并對其中一種猜想加以證明;
          (3)繼續(xù)觀察4,3,5;6,8,10;8,15,17;…,可以發(fā)現(xiàn)各組的第一個數(shù)都是偶數(shù),且從4起也沒有間斷過.運用類似上述探索的方法,直接用m(m為偶數(shù),且m>4)的代數(shù)式來表示股和弦.

          查看答案和解析>>

          同步練習(xí)冊答案