【題目】先閱讀下面的內(nèi)容,再解決問題.
例題:若,求
和
的值.
解:∵
∴
即
∴,
∴,
問題:(1)若,求
的值;
(2)已知是
的三邊長,滿足
,且
中最長的邊的長度為
,求
的取值范圍.
【答案】(1);(2)5≤c<8.
【解析】
(1)先利用完全平方公式整理成平方和的形式,然后根據(jù)非負(fù)數(shù)的性質(zhì)列式求出x、y的值,然后代入代數(shù)式計算即可;
(2)先利用完全平方公式整理成平方和的形式,再利用非負(fù)數(shù)的性質(zhì)求出a、b的值,然后利用三角形的三邊關(guān)系即可求解.
(1)
=(xy)2+(y+2)2
=0,
∴xy=0,y+2=0,
解得x=2,y=2,
∴=(2)2=
;
(2)∵
∴a210a+25+2b212b+18=0,
即(a5)2+2(b3)2=0,
a5=0,b3=0,
解得a=5,b=3,
∵c是△ABC中最長的邊,
∴5≤c<5+3
即5≤c<8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,F是CD上一點,E是BF上一點,連接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,則下列結(jié)論中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個數(shù)有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)一批單價為元的日用商品,如果以單價
元銷售,那么月內(nèi)可售出
件,根據(jù)銷售經(jīng)驗,提高銷售單價會導(dǎo)致銷量的減少,即銷售單價每提高
元,每月銷售量相應(yīng)減少
件,請寫出利潤
與單價
之間的函數(shù)關(guān)系式________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,OM平分∠AOB,將直角三角板的頂點P在射線OM上移動,兩直角邊分別與OA、OB相交于點C、D,問PC與PD相等嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A、B兩點,點A在點B左側(cè),點B的坐標(biāo)為(1,0),C(0,-3)
(1) 求拋物線的解析式;
(2) 若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.
(3) 若點E在x軸上,點P在拋物線上,是否存在以A、C、E、P為頂點且以AC為一邊的平行四邊形?若存在,求點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線交
軸于
點,交
軸于
點,且
.點
是線段
上一點,
交
的延長線于點
.
(1)如圖1,若交
于點
.點
作
,交
的延長線于點
,求證:
;
(2)如圖2,若是
的角平分線,
交
于點
,交
于點
,求
的值;
(3)如圖3,若交
的延長線于點
.請證明:
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x+6與x軸,y軸相交于點A,B,點C在線段OA上,將△BOC沿著BC折疊后,點O恰好落在AB邊上的點D處,若點P為平面內(nèi)異于點C的一點,且滿足△ABC與△ABP全等,則點P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名隊員參加射擊訓(xùn)練,成績分別被制成下列兩個統(tǒng)計圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
(1)寫出表格中a,b,c的值;
(2)分別運(yùn)用上表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊訓(xùn)練成績.若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊員?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com