日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,平面直角坐標系x0y中,點A0,2),B10),C﹣40)點D為射線AC上一動點,連結(jié)BD,交y軸于點F,MABD的外接圓,過點D的切線交x軸于點E

          1)判斷ABC的形狀;

          2)當點D在線段AC上時,

          證明:CDE∽△ABF;

          如圖2My軸的另一交點為N,連結(jié)DN、BN,當四邊形ABND為矩形時,求tanDBC;

          3)點D在射線AC運動過程中,若,求的值.

          【答案】(1)直角三角形;(2)①證明見解析,②;(3)

          【解析】試題分析:(1)已知三個點的坐標,可以求出相應(yīng)線段的長度,運用三角函數(shù)可以證明ACO=BAO,進一步證明BAC=90°;

          2)只需證明CDE=ABD,DCE=BAF,即可證明相似;

          當四邊形ABND為矩形時,根據(jù)直角三角形AOB和直角三角形ABN相似,可求AN長度,進一步求出OM,運用三角函數(shù)求解即可;

          3)根據(jù)點D在線段AC上,和線段AC的延長線上分別討論求解;

          試題解析:

          解:由點A0,2),B10),C﹣4,0)可知:OA=2,OC=4,OB=1,

          在直角三角形AOC和直角三角形AOB中,根據(jù)勾股定理可求:AC= =2,

          AB==

          1)在直角三角形AOC和直角三角形AOB中,tanACO=,tanBAO=,所以ACO=BAO,

          ∵∠ACO+CAO=90°,

          ∴∠BAO+CAO=90°,BAC=90°,

          ∴△ABC是直角三角形.

          2由(1)知:BAC=90°BD是圓M的直徑,

          DE是圓M的切線,∴∠BDE=90°

          ∴∠CDE+ADB=90°,又ADB+ABD=90°,∴∠CDE=ABD,

          ∵∠DCE+ABO=90°ABO+BAF=90°,∴∠DCE=BAF

          ∴△CDE∽△ABF

          當四邊形ABND為矩形時,∵∠ABN=90°,AN是圓的直徑,由OB是直角三角形ABN的斜邊上的高線,由BAO=BA0,BOA=ABN=90°,

          ∴△AOB∽△ABN,

          , AB2=OA×AN,

          OA=2AB=,可求:AN=,

          ON=OM=MNON=,

          在直角三角形OBN中,

          tanDBC==

          3)若點D 在線段AC上,

          如圖2:由CDEABF可得: ,AC=2

          ,可得:CD=,AD=,

          在直角三角形ABD中,由勾股定理可求:BD==,

          ∵∠CBD=FBO,BOF=BDE=90°

          ∴△BFO∽△BED,

          設(shè):DE=2x,則BF=3x,由勾股定理得:OF==,

          ,解得: ,

          DE=BF=,DF=BDDF=,

          =,

          若點D在線段AC的延長線上,

          如圖3DE是圓M的切線,

          ∴∠BDE=90°

          ∴∠EDC+CDB=90°

          ∵∠ABD+CDB=90°

          ∴∠EDC=ABD

          ∵∠DEB+DBE=90°,DBE+OFB=90°

          ∴∠DEB=OFB,

          ∴△CDE∽△ABF,可得: ,AC=2,

          ,可得:CD=,AD=AC+CD=,

          由勾股定理得:BD==,

          ∵∠CBD=FBO,BOF=BDE=90°,

          ∴△BFO∽△BED

          ,

          設(shè):DE=2x,則BF=3x

          由勾股定理得:OF==,

          ,解得: ,

          DE=2x=,BF=3x=,DF=BDDF=,

          =

          綜上所述: 的值是

          3

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】據(jù)統(tǒng)計,2019年第一季度,深圳新出臺的小微企業(yè)普惠性減稅政策合計減稅13.53億元.“13.53用科學(xué)記數(shù)法表示為( 。

          A. 13.53×102B. 1.353×109C. 0.1353×102D. 1.353×102

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】解不等式(組).
          (1)4x-3>2x+5(把解集在數(shù)軸上表示出來)
          (2)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】若方程(x﹣1)(x2﹣2x+m)=0的三個根可以作為一個三角形的三邊之長,則m的取值范圍:

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如果10m表示向北走10m,那么﹣20m表示的是( )

          A. 向東走20m B. 向南走20m C. 向西走20m D. 向北走20m

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某印刷廠印刷某尺寸的廣告紙,印刷張數(shù)為a(單位:萬張),需按整千張印刷計費,收費規(guī)定如下: ①若a≤1:單價為0.4元/張;
          ②若1<a≤2:每增加0.1萬張,所有廣告紙每張減少0.01元,費用再9折優(yōu)惠;
          ③若a>2:每增加0.1萬張,所有廣告紙每張減少0.02元,費用再8折優(yōu)惠.
          (1)若某客戶要印刷廣告紙1.5萬張,則該客戶需支付費用元;
          (2)若某客戶支付了廣告紙費用0.6萬元,求印刷張數(shù)a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列關(guān)系一定成立的是(  )

          A. |a|=|b|,則ab B. |a|=b,則ab

          C. |a|=﹣b,則ab D. a=﹣b,則|a|=|b|

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】把一個多項式化成幾個_______________的形式,叫做把這個多項式分解因式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC中,∠A=30°,∠B=62°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,求∠CDF的度數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案