日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知直線與拋物線相交于點(diǎn)和點(diǎn)兩點(diǎn).

          1)求拋物線的函數(shù)表達(dá)式;

          2)若點(diǎn)是位于直線上方拋物線上的一動點(diǎn),當(dāng)的面積最大時,求此時的面積及點(diǎn)的坐標(biāo);

          3)在軸上是否存在點(diǎn),使是等腰三角形?若存在,直接寫出點(diǎn)的坐標(biāo)(不用說理);若不存在,請說明理由.

          【答案】1)所求拋物線的函數(shù)表達(dá)式為;(2的面積有最大值是,此時點(diǎn)坐標(biāo)為;(3)存在點(diǎn)坐標(biāo)為.

          【解析】

          1)先根據(jù)點(diǎn)B在直線y=x+1求出其坐標(biāo),再將A,B坐標(biāo)代入拋物線解析式求解可得;
          2)作PMx軸于點(diǎn)M,交AB于點(diǎn)N,設(shè)點(diǎn)P的坐標(biāo)為(m-m2+2m+3),點(diǎn)N的坐標(biāo)為(mm+1),依據(jù)SPAB=SPAN+SPBN列出函數(shù)解析式,利用二次函數(shù)的性質(zhì)求解可得;
          3)設(shè)點(diǎn)Q坐標(biāo)為(n0),結(jié)合各點(diǎn)坐標(biāo)得出QA2=-1-n2QB2=2-n2+9,AB2=18,再根據(jù)等腰三角形的定義分三種情況分別求解可得.

          解(1點(diǎn)在直線上,

          ,

          點(diǎn)坐標(biāo)為,

          點(diǎn)和點(diǎn)在拋物線上,

          ,

          解得,

          所求拋物線的函數(shù)表達(dá)式為;

          2)過點(diǎn)軸于點(diǎn),交于點(diǎn),

          設(shè)點(diǎn)的橫坐標(biāo)為

          則點(diǎn)的坐標(biāo)為,

          點(diǎn)的坐標(biāo)為

          點(diǎn)是位于直線上方,

          .

          的面積

          ,

          拋物線開口向下,又

          當(dāng)時,

          的面積有最大值,

          最大值是.

          此時點(diǎn)坐標(biāo)為

          3)存在點(diǎn)坐標(biāo)為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知平面直角坐標(biāo)系,拋物線軸交于點(diǎn)A(-2,0)和點(diǎn)B(4,0)

          1)求這條拋物線的表達(dá)式和對稱軸;

          2)點(diǎn)C在線段OB上,過點(diǎn)CCD軸,垂足為點(diǎn)C,交拋物線與點(diǎn)D,EBD中點(diǎn),聯(lián)結(jié)CE并延長,與軸交于點(diǎn)F

          ①當(dāng)D恰好是拋物線的頂點(diǎn)時,求點(diǎn)F的坐標(biāo);

          ②聯(lián)結(jié)BF,當(dāng)DBC的面積是BCF面積的時,求點(diǎn)C的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計(jì),盆景的平均每盆利潤是160花卉的平均每盆利潤是19,調(diào)研發(fā)現(xiàn):

          ①盆景每增加1盆景的平均每盆利潤減少2;每減少1,盆景的平均每盆利潤增加2;②花卉的平均每盆利潤始終不變.

          小明計(jì)劃第二期培植盆景與花卉共100,設(shè)培植的盆景比第一期增加x第二期盆景與花卉售完后的利潤分別為W1,W2(單位元)

          (1)用含x的代數(shù)式分別表示W1,W2;

          (2)當(dāng)x取何值時第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知ABC的三個頂點(diǎn)都在⊙O上,ABAC,⊙O的半徑等于10cm,圓心OBC的距離為6cm,則AB的長等于____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:正方形ABCD,∠EAF45°

          1)如圖,當(dāng)點(diǎn)EF分別在邊BC、CD上,連接EF,求證:EFBE+DF

          童威同學(xué)是這樣思考的,請你和他一起完成如下解答:證明:將ADF繞點(diǎn)A順時針旋轉(zhuǎn)90°,得ABG,所以ADF≌△ABG

          2)如圖,點(diǎn)M、N分別在邊AB、CD上,且BNDM.當(dāng)點(diǎn)E、F分別在BM、DN上,連接EF,探究三條線段EF、BE、DF之間滿足的數(shù)量關(guān)系,并證明你的結(jié)論.

          3)如圖,當(dāng)點(diǎn)E、F分別在對角線BD、邊CD上.若FC2,則BE的長為   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知二次函數(shù)y=ax22ax3aa0)圖象與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D

          1)求點(diǎn)AB的坐標(biāo);

          2)若M為對稱軸與x軸交點(diǎn),且DM=2AM

          求二次函數(shù)解析式;

          當(dāng)t2xt時,二次函數(shù)有最大值5,求t值;

          若直線x=4與此拋物線交于點(diǎn)E,將拋物線在CE之間的部分記為圖象記為圖象P(含C,E兩點(diǎn)),將圖象P沿直線x=4翻折,得到圖象Q,又過點(diǎn)(10,﹣4)的直線y=kx+b與圖象P,圖象Q都相交,且只有兩個交點(diǎn),求b的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),點(diǎn)FG是邊AC的三等分點(diǎn),DF、EG的延長線相交于點(diǎn)H,連接HAHC

          (1)求證:四邊形FBGH是菱形;

          (2)求證:四邊形ABCH是正方形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)O在△ABC內(nèi),點(diǎn)P、QR分別在邊AB、BC、CA上,且OPBCOQCA,ORABOP=OQ=OR=x,BC=a,CA=bAB=c,則x=( )

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形ABCD中,MBC上一點(diǎn),FAM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長線于點(diǎn)E,交DC于點(diǎn)N

          1)求證:△ABM∽△EFA;

          2)若AB=12,BM=5,求DE的長.

          查看答案和解析>>

          同步練習(xí)冊答案