日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在矩形ABCD,AB=8,BC=4,將矩形沿AC折疊,點(diǎn)B落在點(diǎn)B',則重疊部分的面積為()

          A.12B.10C.8D.6

          【答案】B

          【解析】

          由矩形的性質(zhì)和折疊的性質(zhì)得出∠FCA=FAC,證出AF=CF,設(shè)AF=CF=x,DF=8-x,在RtADF中,根據(jù)勾股定理得出方程,解方程求出AF,AFC的面積= CF×AD,即可得出結(jié)果.

          ∵四邊形ABCD是矩形,

          DC=AB=8AD=BC=4,∠D=90°,ABDC,

          ∴∠BAC=FCA,

          由折疊的性質(zhì)得:∠FAC=BAC

          ∴∠FCA=FAC,

          AF=CF,

          設(shè)AF=CF=x,DF=8-x

          RtADF中,根據(jù)勾股定理得:AD2+DF2=AF2

          42+8-x2=x2,

          解得:x=5,

          ∴△AFC的面積=CF×AD=×5×4=10

          故選:B

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.

          (1)作ABC關(guān)于點(diǎn)C成中心對(duì)稱的A1B1C1

          (2)將A1B1C1向右平移3個(gè)單位,作出平移后的A2B2C2

          (3)在x軸上求作一點(diǎn)P,使PA1+PC2的值最小,并求最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】四邊形是平行四邊形,點(diǎn)邊上運(yùn)動(dòng)(點(diǎn)不與點(diǎn),重合)

          1)如圖1,當(dāng)點(diǎn)運(yùn)動(dòng)到邊的中點(diǎn)時(shí),連接,若平分,證明:

          2)如圖2,過點(diǎn)且交的延長線于點(diǎn),連接.若,,在線段上是否存在一點(diǎn),使得四邊形是菱形?若存在,請(qǐng)說明當(dāng)發(fā),點(diǎn)分別在線段,上什么位置時(shí)四邊形是菱形,并證明;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

          (1)求證:ED為⊙O的切線;

          (2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

          【答案】(1)證明見解析;(2)

          【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
          (2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識(shí),求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

          試題解析:(1)證明:連接OD,

          OEAB,

          ∴∠COE=CADEOD=ODA,

          OA=OD,

          ∴∠OAD=ODA

          ∴∠COE=DOE,

          在△COE和△DOE中,

          ∴△COE≌△DOE(SAS),

          EDOD,

          ED的切線;

          (2)連接CD,交OEM

          RtODE中,

          OD=32,DE=2,

          OEAB,

          ∴△COE∽△CAB,

          AB=5,

          AC是直徑,

          EFAB,

          SADF=S梯形ABEFS梯形DBEF

          ∴△ADF的面積為

          型】解答
          結(jié)束】
          25

          【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

          (1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

          (2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

          (3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)A,B,CD的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1),以CD,E為頂點(diǎn)的三角形與△ABC相似,則點(diǎn)E的坐標(biāo)不可能是( )

          A. 6,0B. 6,3C. 6,5D. 42

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】對(duì)于有理數(shù)a,b,定義一種新運(yùn)算,規(guī)定ab|a+b|+|ab|

          1)計(jì)算2⊙(﹣3)的值;

          2)當(dāng)ab在數(shù)軸上的位置如圖所示時(shí),化簡ab;

          3)已知(aa)⊙a8+a,求a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,某中學(xué)數(shù)學(xué)活動(dòng)小組在學(xué)習(xí)了利用三角函數(shù)測高后,選定測量小河對(duì)岸一幢建筑物BC的高度,他們先在斜坡上的D處,測得建筑物頂端B的仰角為30°.且D離地面的高度DE=5m.坡底EA=30m,然后在A處測得建筑物頂端B的仰角是60°,點(diǎn)E,A,C在同一水平線上,求建筑物BC的高.(結(jié)果用含有根號(hào)的式子表示)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABCD中,DE是∠ADC的平分線,交BC于點(diǎn)E.

          (1)試說明CD=CE;

          (2)若BE=CE,∠B=80°,求∠DAE的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(初步探究)

          1)如圖1,在四邊形ABCD中,∠B=∠C90°,點(diǎn)E是邊BC上一點(diǎn),ABEC,BECD,連接AEDE.判斷△AED的形狀,并說明理由.

          (解決問題)

          2)如圖2,在長方形ABCD中,點(diǎn)P是邊CD上一點(diǎn),在邊BC、AD上分別作出點(diǎn)E、F,使得點(diǎn)F、E、P是一個(gè)等腰直角三角形的三個(gè)頂點(diǎn),且PEPF,∠FPE90°.要求:僅用圓規(guī)作圖,保留作圖痕跡,不寫作法.

          (拓展應(yīng)用)

          3)如圖3,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A2,0),點(diǎn)B4,1),點(diǎn)C在第一象限內(nèi),若△ABC是等腰直角三角形,則點(diǎn)C的坐標(biāo)是   

          4)如圖4,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A10),點(diǎn)Cy軸上的動(dòng)點(diǎn),線段CA繞著點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)90°至線段CB,CACB,連接BO、BA,則BO+BA的最小值是   

          查看答案和解析>>

          同步練習(xí)冊(cè)答案