日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知∠AOB=60°,半徑為3cm的⊙P沿邊OA從右向左平行移動(dòng),與邊OA相切的切點(diǎn)記為點(diǎn)C.
          (1)⊙P移動(dòng)到與邊OB相切時(shí)(如圖),切點(diǎn)為D,求劣弧 的長(zhǎng);
          (2)⊙P移動(dòng)到與邊OB相交于點(diǎn)E,F(xiàn),若EF=4 cm,求OC的長(zhǎng).

          【答案】
          (1)解:連接DP、CP,

          ∵∠AOB=60°,半徑為3cm的⊙P沿邊OA從右向左平行移動(dòng),與邊OA相切的切點(diǎn)記為點(diǎn)C.

          ∴∠DPC=120°,

          ∴劣弧 的長(zhǎng)為: =2πcm


          (2)解:可分兩種情況,

          ①如圖2,當(dāng)P在∠AOB內(nèi)部,連接PE,PC,過(guò)點(diǎn)P做PM⊥EF于點(diǎn)M,延長(zhǎng)CP交OB于點(diǎn)N,

          ∵EF=4 cm,∴EM=2 cm,

          在Rt△EPM中,PM= =1cm,

          ∵∠AOB=60°,∴∠PNM=30°,

          ∴PN=2PM=2cm,

          ∴NC=PN+PC=5cm,

          在Rt△OCN中,OC=NC×tan30°=5× = cm.

          ②如圖3,當(dāng)P在∠AOB外部,連接PF,PC,PC交EF于點(diǎn)N,過(guò)點(diǎn)P作PM⊥EF于點(diǎn)M,

          由①可知,PN=2cm,

          ∴NC=PC﹣PN=1cm,

          在Rt△OCN中,OC=NC×tan30°=1× = cm.

          綜上所述,OC的長(zhǎng)為 cm或 cm.


          【解析】(1)根據(jù)∠AOB=60°,半徑為3cm的⊙P沿邊OA從右向左平行移動(dòng),與邊OA相切的切點(diǎn)記為點(diǎn)C,利用弧長(zhǎng)公式得出弧 的長(zhǎng);(2)分兩種情況分析,①當(dāng)P在∠AOB內(nèi)部,根據(jù)⊙P移動(dòng)到與邊OB相交于點(diǎn)E,F(xiàn),利用垂徑定理得出EF=4 cm,得出EM=2 cm,進(jìn)而得出OC的長(zhǎng). ②當(dāng)P在∠AOB外部,連接PF,PC,PC交EF于點(diǎn)N,過(guò)點(diǎn)P作PM⊥EF于點(diǎn)M,進(jìn)而求出即可.
          【考點(diǎn)精析】掌握含30度角的直角三角形和勾股定理的概念是解答本題的根本,需要知道在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,交AB的延長(zhǎng)線于點(diǎn)D,且∠D=2∠CAD.
          (1)求∠D的度數(shù);
          (2)若CD=2,求BD的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,A、B、C、D依次為一直線上4個(gè)點(diǎn),BC=2,△BCE為等邊三角形,⊙O過(guò)A、D、E3點(diǎn),且∠AOD=120°.設(shè)AB=x,CD=y,則y與x的函數(shù)關(guān)系式為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知⊙O上依次有A、B、C、D四個(gè)點(diǎn), = ,連接AB、AD、BD,弦AB不經(jīng)過(guò)圓心O,延長(zhǎng)AB到E,使BE=AB,連接EC,F(xiàn)是EC的中點(diǎn),連接BF.
          (1)若⊙O的半徑為3,∠DAB=120°,求劣弧 的長(zhǎng);
          (2)求證:BF= BD;
          (3)設(shè)G是BD的中點(diǎn),探索:在⊙O上是否存在點(diǎn)P(不同于點(diǎn)B),使得PG=PF?并說(shuō)明PB與AE的位置關(guān)系.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了解某!罢衽d閱讀工程”的開(kāi)展情況,教育部門對(duì)該校初中生的閱讀情況進(jìn)行了隨機(jī)問(wèn)卷調(diào)查,繪制了如下圖表: 初中生喜愛(ài)的文學(xué)作品種類調(diào)查統(tǒng)計(jì)表

          種類

          小說(shuō)

          散文

          傳記

          科普

          軍事

          詩(shī)歌

          其他

          人數(shù)

          72

          8

          21

          19

          15

          2

          13


          根據(jù)上述圖表提供的信息,解答下列問(wèn)題:
          (1)喜愛(ài)小說(shuō)的人數(shù)占被調(diào)查人數(shù)的百分比是多少?初中生每天閱讀時(shí)間的中位數(shù)在哪個(gè)時(shí)間段內(nèi)?
          (2)將寫讀后感、筆記積累、畫圈點(diǎn)讀等三種方式稱為有記憶閱讀.請(qǐng)估計(jì)該,F(xiàn)有的2000名初中生中,能進(jìn)行有記憶閱讀的人數(shù)約是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一個(gè)扇形的弧長(zhǎng)是10πcm,面積是60πcm2 , 則此扇形的圓心角的度數(shù)是(
          A.300°
          B.150°
          C.120°
          D.75°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】近幾年,隨著電子商務(wù)的快速發(fā)展,“電商包裹件”占“快遞件”總量的比例逐年增長(zhǎng),根據(jù)企業(yè)財(cái)報(bào),某網(wǎng)站得到如下統(tǒng)計(jì)表:

          年份

          2014

          2015

          2016

          2017(預(yù)計(jì))

          快遞件總量(億件)

          140

          207

          310

          450

          電商包裹件(億件)

          98

          153

          235

          351


          (1)請(qǐng)選擇適當(dāng)?shù)慕y(tǒng)計(jì)圖,描述2014﹣2017年“電商包裹件”占當(dāng)年“快遞件”總量的百分比(精確到1%);
          (2)若2018年“快遞件”總量將達(dá)到675億件,請(qǐng)估計(jì)其中“電商包裹件”約為多少億件?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列算式運(yùn)算結(jié)果正確的是(
          A.(2x52=2x10
          B.(﹣3)2=
          C.(a+1)2=a2+1
          D.a﹣(a﹣b)=﹣b

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若三個(gè)非零實(shí)數(shù)x,y,z滿足:只要其中一個(gè)數(shù)的倒數(shù)等于另外兩個(gè)數(shù)的倒數(shù)的和,則稱這三個(gè)實(shí)數(shù)x,y,z構(gòu)成“和諧三組數(shù)”.
          (1)實(shí)數(shù)1,2,3可以構(gòu)成“和諧三組數(shù)”嗎?請(qǐng)說(shuō)明理由;
          (2)若M(t,y1),N(t+1,y2),R(t+3,y3)三點(diǎn)均在函數(shù) (k為常數(shù),k≠0)的圖象上,且這三點(diǎn)的縱坐標(biāo)y1 , y2 , y3構(gòu)成“和諧三組數(shù)”,求實(shí)數(shù)t的值;
          (3)若直線y=2bx+2c(bc≠0)與x軸交于點(diǎn)A(x1 , 0),與拋物線y=ax2+3bx+3c(a≠0)交于B(x2 , y2),C(x3 , y3)兩點(diǎn).
          ①求證:A,B,C三點(diǎn)的橫坐標(biāo)x1 , x2 , x3構(gòu)成“和諧三組數(shù)”;
          ②若a>2b>3c,x2=1,求點(diǎn)P( , )與原點(diǎn)O的距離OP的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案