日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】數(shù)學(xué)活動課上,老師提出了一個問題:

          我們知道,三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和,那么三角形的一個內(nèi)角與它不相鄰的兩個外角的和之間存在何種數(shù)量關(guān)系?

          (1)獨立思考,請你完成老師提出的問題:

          如圖所示,已知∠DBC和∠BCE分別為△ABC的兩個外角,試探究∠A和∠DBC,∠BCE之間的數(shù)量關(guān)系.

          合作交流,“創(chuàng)新小組”受此問題的啟發(fā):分別作外角∠CBD和∠BCE的平分線BFCF,交于點F(如圖所示),那么∠A與∠F之間有何數(shù)量關(guān)系?請寫出解答過程.

          【答案】(1)∠DBC+∠BCE-∠A=180(2)∠A+∠F=90

          【解析】

          (1)根據(jù)三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和,三角形內(nèi)角和定理計算即可.

          (2)根據(jù)角平分線可知∠FBC+FCB=DBC+BCE,)再根據(jù)三角形內(nèi)角和定理,結(jié)合(1)即可解答.

          ⑴∠DBC+BCE-A=180.

          DBC+BCE

          =ABC+A+ACB+A

          =180°+A

          即∠DBC+BCE-A=180.

          (2) A+F=90°

          BFCF分別平分∠CBD和∠BCE,

          ∴∠CBF= CBD,BCF= BCE.

          ∴∠CBF+BCF= (CBD+BCE).

          ∵∠CBF+BCF=180-F,DBC+BCE=180+A.

          180-F =CBD+BCE)= (180+A)

          A+F=90.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(方程思想)如圖,在鐵路CD同側(cè)有兩個村莊A,B,它們到鐵路的距離分別是15 km10 km,作ACCD,BDCD,垂足分別為C,D,且CD=25 km.已知鐵路旁有一個農(nóng)副產(chǎn)品收購站E,且AE=BE,CE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在⊙O中,弦AB所對的劣弧是圓周長的 ,其中圓的半徑為4cm,求:

          (1)求AB的長.
          (2)求陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AF平分∠CAB,交CD于點E,交CB于點F.若AC=3,AB=5,則CE的長為(  )

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列命題是真命題的是( )

          A. a2=b2,a=b B. 若∠1+∠2=90,則∠1與∠2互余

          C. 若∠α與∠β是同位角,則∠α=∠β D. a⊥b,b⊥c,則a⊥c

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABF中,以AB為直徑的圓分別交邊AF、BF于C、E兩點,CD⊥AF.AC是∠DAB的平分線,

          (1)求證:直線CD是⊙O的切線.
          (2)求證:△FEC是等腰三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖.在等邊△ABC中,∠ABC與∠ACB的平分線相交于點O,且ODAB,OEAC.

          (1)試判定△ODE的形狀,并說明你的理由;

          (2)線段BD、DE、EC三者有什么關(guān)系?寫出你的判斷過程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形ABCD和正方形AEFG有一個公共點A,點G、E分別在線段AD、AB上.

          (1)連接DF、BF,若將正方形AEFG繞點A按順時針方向旋轉(zhuǎn),判斷命題“在旋轉(zhuǎn)的過程中,線段DF與BF的長始終相等”是否正確?答:
          (2)若將正方形AEFG繞點A按順時針方向旋轉(zhuǎn),連接DG,在旋轉(zhuǎn)過程中,你能否找到一條線段的長與線段DG的長始終相等?并以圖為例說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某地下管道若由甲隊單獨鋪設(shè)恰好在規(guī)定時間內(nèi)完成;若由乙隊單獨鋪設(shè),需要超過規(guī)定時間15天才能完成,如果先由甲、乙兩隊合做10,再由乙隊單獨鋪設(shè)正好按時完成.

          (1)這項工程的規(guī)定時間是多少天?

          (2)已知甲隊每天的施工費用為5000乙隊每天的施工費用為3000,為了縮短工期以減少對居民交通的影響工程指揮部最終決定該工程由甲、乙兩隊合做來完成,那么該工程施工費用是多少?

          查看答案和解析>>

          同步練習(xí)冊答案