日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖在四邊形ABCD,AD//BC, BC=4,DC=3,AD=6.動點P從點D出發(fā),沿射線DA的方向,在射線DA上以每秒2兩個單位長的速度運動,動點Q從點C出發(fā)在線段CB上以每秒1個單位長的速度向點B運動,P、Q分別從點D,C同時出發(fā),當(dāng)點Q運動到點BP隨之停止運動.設(shè)運動的時間為t().

          (1)設(shè)的面積為,直接寫出之間的函數(shù)關(guān)系式是____________(不寫取值范圍).

          (2)當(dāng)B,P,Q三點為頂點的三角形是等腰三角形時,求出此時的值.

          (3)當(dāng)線段PQ與線段AB相交于點O,2OA=OB,直接寫出=_____________.

          (4)是否存在時刻,使得若存在求出的值;若不存在,請說明理由.

          【答案】1;(2, ;(3;(4

          【解析】試題分析:

          (1)由題意可得BQ=BC-CQ=4-t,點PBC的距離=CD=3,由此結(jié)合三角形的面積公式即可得到St之間的函數(shù)關(guān)系式;

          (2)過點PPH⊥BC于點H,結(jié)合勾股定理和已知條件把BP2、BQ2、PQ2用含“t”的代數(shù)式表達出來,然后分BP=BQ、BP=PQ、BQ=PQ三種情況列出方程,解方程得到對應(yīng)的t的值,再結(jié)合題中的條件檢驗即可得到符合要求的t的值;

          3如圖2,過點PPMBCCB的延長線于點M,易證得四邊形PMCD是矩形,由此可得PM=CD=3,CM=PD=2t,結(jié)合AD=6,BC=4,可得PA=2t-6,BQ=4-t,MQ=CM-CQ=tADBC可得△OAP∽△OBQ,結(jié)合2OA=OB即可求得t的值,從而可由tanBQP=求得其值;

          4如圖3,過點DDM∥PQBC的延長線于點M,則當(dāng)∠BDM=90°時,PQ⊥BD,即當(dāng)BM2=DM2+BD2,PQ⊥BD,由此結(jié)合已知條件把DM2、BM2BD2用含“t”的式子表達出來,列出方程就可得解得t的值.

          試題解析

          1)由題意可得BQ=BC-CQ=4-t,點PBC的距離=CD=3,

          SPBQ=BQ×3=;

          2)如下圖,過點PPH⊥BC于點H,

          ∴∠PHB=∠PHQ=90°,

          ∵∠C=90°AD∥BC,

          ∴∠CDP=90°,

          四邊形PHCD是矩形,

          ∴PH=CD=3HC=PD=2t,

          ∵CQ=tBC=4,

          ∴HQ=CH-CQ=t,BH=BC-CH=4-2tBQ=4-t,

          BQ2=BP2= ,PQ2=,

          BQ2=BP2可得: ,解得:無解;

          BQ2=PQ2可得: 解得 ;

          BP2= PQ2可得: ,解得 ,

          當(dāng)BQ=4-4=0,不符合題意,

          綜上所述 ;

          3如圖2,過點PPM⊥BCCB的延長線于點M,

          ∴∠PMC=∠C=90°,

          ∵AD∥BC

          ∴∠D=90°,△OAP∽△OBQ,

          四邊形PMCD是矩形, ,

          ∴PM=CD=3,CM=PD=2t,

          ∵AD=6BC=4,CQ=t,

          ∴PA=2t-6,BQ=4-t,MQ=CM-CQ=2t-t=t,

          ,解得

          MQ= ,

          ∵PM=3,∠PMQ=90°,

          tanBPQ=;

          (4)如圖3,過點DDM∥PQBC的延長線于點M,則當(dāng)∠BDM=90°時,PQ⊥BD,即當(dāng)BM2=DM2+BD2,PQ⊥BD,

          ∵AD∥BCDM∥PQ,

          四邊形PQMD是平行四邊形,

          ∴QM=PD=2t

          ∵QC=t,

          ∴CM=QM-QC=t,

          ∵∠BCD=∠MCD=90°,

          ∴BD2=BC2+DC2=25,DM2=DC2+CM2=9+t2

          ∵BM2=(BC+CM)2=(4+t)2,

          BM2=BD2+DM2可得: ,解得:

          當(dāng)BDM=90°

          即當(dāng)時,PQBD.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)學(xué)興趣小組要制作長方形和梯形兩種不同形狀的卡片,尺寸如圖所示(單位:cm.

          1)長方形卡片的面積是   cm2;若梯形卡片的下底是上底的3倍,則梯形卡片的面積是   cm2;

          2)在(1)的條件下,做5張長方形卡片比做3張?zhí)菪慰ㄆ嘤昧隙嗌倨椒嚼迕祝?/span>

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我市正在開展食品安全城市創(chuàng)建活動,為了解學(xué)生對食品安全知識的了解情況,學(xué)校隨機抽取了部分學(xué)生進行問卷調(diào)查,將調(diào)查結(jié)果按照“A非常了解、B了解、C了解較少、D不了解四類分別進行統(tǒng)計,并繪制了下列兩幅統(tǒng)計圖(不完整).請根據(jù)圖中信息,解答下列問題:

          (1)此次共調(diào)查了   名學(xué)生;

          (2)扇形統(tǒng)計圖中D所在扇形的圓心角為   ;

          (3)將上面的條形統(tǒng)計圖補充完整;

          (4)若該校共有800名學(xué)生,請你估計對食品安全知識非常了解的學(xué)生的人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在同一直角坐標(biāo)系中,函數(shù)的圖象可能是( 。

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在矩形ABCD,AD=3CD=4,E在邊CD,DE=1.

          1感知如圖①連接AE,過點E,BC于點F,連接AF易證 (不需要證明);

          2)探究如圖②P在矩形ABCD的邊AD(P不與點A、D重合),連接PE過點E ,BC于點F連接PF.求證 相似;

          3)應(yīng)用如圖③,EFAB邊于點F, ,其他條件不變,的面積是6,AP的長為____.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】將矩形ABCD繞點B順時針旋轉(zhuǎn)得到矩形A1BC1D1,點A、C、D的對應(yīng)點分別為A1C1、D1,當(dāng)點A1落在AC上時.

          1)如圖,若∠CAB60°,求證:四邊形ABD1C為平行四邊形;

          2)如圖,AD1CB于點O.若∠CAB≠60°,求證:DOAO.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知在紙面上有一數(shù)軸(如圖),折疊紙面.

          (1)若1表示的點與-1表示的點重合,則-2表示的點與數(shù) 表示的點重合;

          (2)若-1表示的點與3表示的點重合,回答以下問題:

          ① 5表示的點與數(shù) 表示的點重合;

          ② 若數(shù)軸上A、B兩點之間的距離為9(AB的左側(cè)),且A、B兩點經(jīng)折疊后重合,求A、B兩點表示的數(shù)是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在菱形ABCD中,CE垂直對角線AC于點C,AB的延長線交CE于點E.

          1)求證:CDBE;

          2)如果∠E60°,CE=m,請寫出求菱形ABCD面積的思路

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在數(shù)軸上的三個點、表示的數(shù)分別為-3、-2、2,試回答下列問題:

          1,兩點間的距離是______

          2)若點與點的距離是8,則點表示的數(shù)是多少?

          3)若將數(shù)軸折疊,使點與點重合,則點與哪個數(shù)重合?

          查看答案和解析>>

          同步練習(xí)冊答案