日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】閱讀理解:如圖1,在正多邊形A1A2A3…An的邊A2A3上任取一不與點A2重合的點B2,并以線段A1B2為邊在線段A1A2的上方作以正多邊形A1B2B3…Bn,把正多邊形A1B2B3…Bn叫正多邊形A1A2…An的準位似圖形,點A3稱為準位似中心.

          特例論證:(1)如圖2已知正三角形A1A2A3的準位似圖形為正三角形A1B2B3,試證明:隨著點B2的運動,∠B3A3A1的大小始終不變.

          數(shù)學思考:(2)如圖3已知正方形A1A2A3A4的準位似圖形為正方形A1B2B3B4,隨著點B2的運動,∠B3A3A4的大小始終不變?若不變,請求出∠B3A3A4的大。蝗舾淖,請說明理由.

          歸納猜想:(3)在圖(1)的情況下:①試猜想∠B3A3A4的大小是否會發(fā)生改變?若不改變,請用含n的代數(shù)式表示出∠B3A3A4的大。ㄖ苯訉懗鼋Y(jié)果);若改變,請說明理由.②∠B3A3A4+B4A4A5+B5A5A6+…+BnAnA1=   (用含n的代數(shù)式表示)

          【答案】1)見解析;(2)不變,45°;(3)①不變,,②

          【解析】

          1)先判斷出A2A1B2≌△A3A1B3,再利用等邊三角形的性質(zhì)即可得出結(jié)論;

          2)先判斷出A3B2B3≌△DA1B2,再利用正方形的性質(zhì)即可得出結(jié)論;

          3)①先判斷出A3B2B3≌△DA1B2,再利用正多邊形的邊相等和每個內(nèi)角即可得出結(jié)論;②利用①的結(jié)論和方法即可得出結(jié)論.

          解:(1)證明:∵△A1A2A3A1B2B3是正三角形,

          A1A2=A1A3,A1B2=A1B3,∠A2A1A3=B2A1B3=60°

          ∴∠A2A1B2=A3A1B3,

          ∴△A2A1B2≌△A3A1B3,

          ∴∠B3A3A1=A2=60°,

          ∴∠B3A3A1的大小不變;

          2)∠B3A3A4的大小不變,

          理由:如圖,在邊A1A2上取一點D,使A1D=A3B2,連接B2D,

          ∵四邊形A1A2A3A4A1B2B3B4是正方形,

          A1B2=B2B3,∠A1B2B3=A1A2A3=90°,

          ∴∠A3B2B3+A1B2A2=90°,∠A2A1B2+A1B2A2=90°,

          ∴∠A3B2B3=A2A1B2

          ∴△A3B2B3≌△DA1B2,

          ∴∠B2A3B3=A1DB2

          A1A2=A2A3,A1D=A3B2

          A2B2=A2D,

          ∵∠A1A2A3=90°,

          ∴△DA2B2是等腰直角三角形,

          ∴∠A1DB2=135°

          ∴∠B2A3B3=135°,

          ∵∠A4A3A2=90°,

          ∴∠B3A3A4=45°

          即:∠B3A3A4的大小始終不變;

          3)①∠B3A3B4的大小始終不變,理由:如圖1,

          A1A2上取一點D,使A1D=A3B2

          連接B2D,

          ∵∠A2A1B2=180°﹣∠A1B2A2,∠A3B2B3=180°﹣∠A1B2A2

          ∴∠A2A1B2=A3B2B3,

          A1B2=B2B3

          ∴△A3B2B3≌△DA1B2,

          ∴∠B2A3B3=A1DB2,

          A1A2=A2A3,A1D=A3B2

          A2D=A2B2,

          ∴∠A1DB2==90°

          ∴∠B3A3A4=A1DB2﹣∠B2A3A4=90°=;

          ②由①知,∠B3A3A4=,

          同①的方法可得,∠B4A4A5=×2,∠B5A5A6=×3,,∠BnAnA1=×n2),

          ∴①∠B3A3A4+B4A4A5+B5A5A6+…+BnAnA1

          =+×2+×3+…×n2=,

          故答案為:

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】二次函數(shù)y=ax2+bx+ca0)的圖象如圖所示,根據(jù)圖象解答下列問題:

          1)寫出方程ax2+bx+c=0的兩個根;

          2)寫出不等式ax2+bx+c0的解集;

          3)寫出yx的增大而減小的自變量x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系;折線OBCDA表示轎車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系.請根據(jù)圖象解答下列問題:

          1)當轎車剛到乙地時,此時貨車距離乙地   千米;

          2)當轎車與貨車相遇時,求此時x的值;

          3)在兩車行駛過程中,當轎車與貨車相距20千米時,求x的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,拋物線yx2+bx+cx軸交于AB兩點,與y軸交于C點,OA2OC6,連接ACBC

          1)求拋物線的解析式;

          2)點D在拋物線的對稱軸上,當△ACD的周長最小時,求點D的坐標;

          3)點E是第四象限內(nèi)拋物線上的動點,連接CEBE.求△BCE面積的最大值及此時點E的坐標;

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,已知ABC內(nèi)接于⊙O,AB是直徑,ODAC,AD=OC

          1)當∠B=30°時,請判斷四邊形OCAD的形狀,為什么?

          2)當∠B等于多少度時,AD與⊙O相切?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知的外接圓,的直徑,過的中點的直徑交弦于點,連接、.

          1)如圖1,若點是線段的中點,求的度數(shù);

          2)如圖2,在上取一點,使,求證:

          3)如圖3,取的中點,連接并延長于點,連接交于點,若,且,求的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知下列命題:

          ①若,則;

          ②當時,若,則;

          ③直角三角形中斜邊上的中線等于斜邊的一半;

          ④矩形的兩條對角線相等.

          其中原命題與逆命題均為真命題的個數(shù)是(

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,一艘海輪位于燈塔P的東北方向,距離燈塔80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東30°方向上的B處.

          1)若燈塔P周圍50海里范圍內(nèi)有暗礁,海輪從A處到B處的途中,是否有觸礁危險?

          2)若海輪以每小時30海里的速度從A處到B處,試判斷海輪能否在5小時內(nèi)到達B處,并說明理由.(參考數(shù)據(jù):≈1.41,≈1.73,≈2.45

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】閱讀下面材料:

          小明觀察一個由1×1正方形點陣組成的點陣圖,圖中水平與豎直方向上任意兩個相鄰點間的距離都是1.他發(fā)現(xiàn)一個有趣的問題:對于圖中出現(xiàn)的任意兩條端點在點陣上且互相不垂直的線段,都可以在點陣中找到一點構(gòu)造垂直,進而求出交點與垂足之間的數(shù)值.

          請回答:

          1)如圖1,A、B、C是點陣中的三個點,請在點陣中找到點D,作出線段CD,使得CDAB;

          2)如圖2,線段ABCD交于點O,小明在點陣中找到了點E,連接AE.恰好滿足AECDE,再作出點陣中的其它線段,就可以構(gòu)造相似三角形,經(jīng)過推理和計算能夠使問題得到解決.

          請你幫小明計算:OC   OF   ;

          參考小明思考問題的方法,解決問題:

          3)如圖3,線段ABCD交于點O.在點陣中找到點E,連接AE,滿足AECDF.計算: OC   OF   

          查看答案和解析>>

          同步練習冊答案