日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖(1),AB是⊙O的直徑,且AB=10,C是⊙O上的動(dòng)點(diǎn),AC是弦,直線EF和⊙O相切于點(diǎn)C,AD⊥EF,垂足為D.
          (1)求證:∠DAC=∠BAC;
          (2)若AD和⊙O相切于點(diǎn)A,求AD的長(zhǎng);
          (3)若把直線EF向上平行移動(dòng),如圖(2),EF交⊙O于G、C兩點(diǎn),題中的其他條件不變,這時(shí)與∠DAC相等的角是否存在,并證明.

          【答案】分析:(1)連接OC,推出∠OCA=∠OAC,根據(jù)平行線的性質(zhì)和判定和切線性質(zhì)得出∠DAC=∠OCA,即可得出答案;
          (2)推出四邊形OADC是正方形,推出OA=AD,即可得出答案;
          (3)連接BC推出∠ADC=∠BCA=90°,根據(jù)三角形的內(nèi)角和定理推出∠DAC=∠BCG=∠BAG.
          解答:
          (1)證明:連接OC,如圖(1),
          ∵EF切⊙O于C,
          ∴OC⊥EF,
          ∵AD⊥EF,
          ∴OC∥AD,
          ∴∠DAC=∠OCA,
          ∵OA=OC,
          ∴∠BAC=∠OCA,
          ∴∠DAC=∠BAC.

          (2)解:連接OC,如圖(3),
          ∵AD切⊙O于A,
          ∴OA⊥AD,
          ∵AD⊥EF,OC⊥EF,
          ∴∠OAD=∠ADC=∠OCD=90°,
          ∴四邊形OADC是矩形,
          ∵OA=OC,
          ∴矩形OADC是正方形,
          ∴AD=OA,
          ∵AB=2OA=10,
          ∴AD=OA=5.

          (3)解:存在∠BAG=∠DAC,
          理由是:連接BC,如圖(2),
          ∵AB是⊙O直徑,
          ∴∠BCA=90°,
          ∴∠ACD+∠BCE=90°,
          ∵∠ADC=90°,
          ∴∠ACD+∠DAC=90°,
          ∴∠DAC=∠BCG,
          ∵圓周角∠BAG和∠BCG都對(duì)弧BG,
          ∴∠BCG=∠BAG,
          ∴∠BAG=∠DAC.
          點(diǎn)評(píng):本題考查了切線的性質(zhì),矩形的判定,正方形的性質(zhì)和判定,平行線的性質(zhì)和判定,圓周角定理,等腰三角形的性質(zhì)等知識(shí)點(diǎn)的綜合運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知直線AB是⊙O的切線,A為切點(diǎn),OB交⊙O于點(diǎn)C,點(diǎn)D在⊙O上,且∠OBA=40°,則∠ADC=
           
          度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖(1),AB是半徑為R的⊙O的一條弦,點(diǎn)P是⊙O上任意一點(diǎn)(與A、B不重合)若R=2,AB=2
          3

          (1)若點(diǎn)P在⊙O優(yōu)弧AB上,AP、BP分別與以AB為直徑的圓交于C、D點(diǎn)
          ①請(qǐng)利用圖(1)求∠APB的度數(shù).
          ②請(qǐng)利用圖(2)求CD的長(zhǎng).
          (2)若點(diǎn)P是⊙O劣弧AB上一點(diǎn),如圖(3)AP、BP的延長(zhǎng)線分別交以AB為直徑的圓于C、D,你還能求出CD的長(zhǎng)嗎?若能,請(qǐng)求出CD的長(zhǎng);若不能,請(qǐng)說(shuō)明理由.
          精英家教網(wǎng)精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•歷城區(qū)二模)(1)已知:如圖1所示,AB=AE,∠1=∠2,∠B=∠E.求證:BC=ED.
          (2)如圖2所示,AB是⊙O的切線,切點(diǎn)為A,OA=1,∠AOB=60°,求圖中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知:AB是⊙O的直徑,弦CD⊥AB于H,CE平分∠DCO交⊙O于點(diǎn)E.
          (1)求證:點(diǎn)E平分弧ADB;
          (2)若⊙O的半徑為2,CD=2
          3

          ①求點(diǎn)O到弦AC的距離;
          ②在圓周上,共有幾個(gè)點(diǎn)到直線AC的距離為1的點(diǎn),在圖中畫出這些點(diǎn),并指出△AOC的外接圓的圓心的位置;
          ③若圓上有一動(dòng)點(diǎn)P從點(diǎn)A出發(fā),順時(shí)針?lè)较蛟趫A上運(yùn)動(dòng)一周,當(dāng)S△POA=S△AOC時(shí),求點(diǎn)P所走過(guò)的弧長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,⊙O中,AB是直徑,半徑CO⊥AB,D是CO的中點(diǎn),DE∥AB,求證:
          EC
          =2
          EA

          查看答案和解析>>

          同步練習(xí)冊(cè)答案