日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】圖中是拋物線拱橋,P處有一照明燈,水面OA寬4m,從O、A兩處觀測P處,仰角分別為α、β,且tanα= ,tan ,以O(shè)為原點(diǎn),OA所在直線為x軸建立直角坐標(biāo)系.
          (1)求點(diǎn)P的坐標(biāo);
          (2)水面上升1m,水面寬多少( 取1.41,結(jié)果精確到0.1m)?

          【答案】
          (1)解:過點(diǎn)P作PH⊥OA于H,如圖.

          設(shè)PH=3x,

          在Rt△OHP中,

          ∵tanα= = ,

          ∴OH=6x.

          在Rt△AHP中,

          ∵tanβ= =

          ∴AH=2x,

          ∴OA=OH+AH=8x=4,

          ∴x= ,

          ∴OH=3,PH=

          ∴點(diǎn)P的坐標(biāo)為(3,


          (2)解:若水面上升1m后到達(dá)BC位置,如圖,

          過點(diǎn)O(0,0),A(4,0)的拋物線的解析式可設(shè)為y=ax(x﹣4),

          ∵P(3, )在拋物線y=ax(x﹣4)上,

          ∴3a(3﹣4)= ,

          解得a=﹣ ,

          ∴拋物線的解析式為y=﹣ x(x﹣4).

          當(dāng)y=1時,﹣ x(x﹣4)=1,

          解得x1=2+ ,x2=2﹣

          ∴BC=(2+ )﹣(2﹣ )=2 =2×1.41=2.82≈2.8.

          答:水面上升1m,水面寬約為2.8米.


          【解析】(1)過點(diǎn)P作PH⊥OA于H,如圖,設(shè)PH=3x,運(yùn)用三角函數(shù)可得OH=6x,AH=2x,根據(jù)條件OA=4可求出x,即可得到點(diǎn)P的坐標(biāo);(2)若水面上升1m后到達(dá)BC位置,如圖,運(yùn)用待定系數(shù)法可求出拋物線的解析式,然后求出y=1時x的值,就可解決問題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校園文學(xué)社為了解本校學(xué)生對本社一種報紙四個版面的喜歡情況,隨機(jī)抽查部分學(xué)生做了一次問卷調(diào)查,要求學(xué)生選出自己最喜歡的一個版面,將調(diào)查數(shù)據(jù)進(jìn)行了整理、繪制成部分統(tǒng)計圖如下:

          請根據(jù)圖中信息,解答下列問題:
          (1)該調(diào)查的樣本容量為 , a=%,“第一版”對應(yīng)扇形的圓心角為°;
          (2)請你補(bǔ)全條形統(tǒng)計圖;
          (3)若該校有1000名學(xué)生,請你估計全校學(xué)生中最喜歡“第三版”的人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y= x2+bx+c與x軸交于點(diǎn)A(﹣2,0),交y軸于點(diǎn)B(0, ).直線y=kx 過點(diǎn)A與y軸交于點(diǎn)C,與拋物線的另一個交點(diǎn)是D.

          (1)求拋物線y= x2+bx+c與直線y=kx 的解析式;
          (2)設(shè)點(diǎn)P是直線AD下方的拋物線上一動點(diǎn)(不與點(diǎn)A、D重合),過點(diǎn)P作y軸的平行線,交直線AD于點(diǎn)M,作DE⊥y軸于點(diǎn)E.探究:是否存在這樣的點(diǎn)P,使四邊形PMEC是平行四邊形?若存在請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
          (3)在(2)的條件下,作PN⊥AD于點(diǎn)N,設(shè)△PMN的周長為m,點(diǎn)P的橫坐標(biāo)為x,求m與x的函數(shù)關(guān)系式,并求出m的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,點(diǎn)M是邊AB的中點(diǎn),連結(jié)CM,點(diǎn)P從點(diǎn)C出發(fā),以1cm/s的速度沿CB運(yùn)動到點(diǎn)B停止,以PC為邊作正方形PCDE,點(diǎn)D落在線段AC上.設(shè)點(diǎn)P的運(yùn)動時間為t(s).
          (1)當(dāng)t=時,點(diǎn)E落在△MBC的邊上;
          (2)以E為圓心,1cm為半徑作圓E,則當(dāng)t=時,圓E與直線AB或直線CM相切.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點(diǎn)D,交AB于點(diǎn)H,AC的垂直平分線交BC于點(diǎn)E,交AC于點(diǎn)G,連接AD,AE,則下列結(jié)論錯誤的是(
          A. =
          B.AD,AE將∠BAC三等分
          C.△ABE≌△ACD
          D.SADH=SCEG

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對角線.
          (1)求證:△ADE≌△CBF;
          (2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABO縮小后變?yōu)椤鰽′B′O,其中A、B的對應(yīng)點(diǎn)分別為A′,B′,A′,B′均在圖中格點(diǎn)上,若線段AB上有一點(diǎn)P(m,n),則點(diǎn)P在A′B′上的對應(yīng)點(diǎn)P′的坐標(biāo)為(
          A.( ,n)??
          B.(m,n)??
          C.( )??
          D.(m,

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形ABCD邊長為8cm,F(xiàn)G是等腰直角△EFG的斜邊,F(xiàn)G=10cm,點(diǎn)B、F、C、G都在直線l上,△EFG以1cm/s的速度沿直線l向右做勻速運(yùn)動,當(dāng)t=0時,點(diǎn)G與B重合,記t(0≤t≤8)秒時,正方形與三角形重合部分的面積是Scm2 , 則S與t之間的函數(shù)關(guān)系圖象大致為( )

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】觀察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面問題:2+22+23+24+…+22015﹣1的末位數(shù)字是(  )
          A.0
          B.3
          C.4
          D.8

          查看答案和解析>>

          同步練習(xí)冊答案