日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】哈爾濱市某校成立了航模古詩(shī)詞欣賞、音樂(lè)、書(shū)法四個(gè)興趣小組,為了解興趣小組報(bào)名的情況,對(duì)本校參加報(bào)名的部分學(xué)生進(jìn)行了抽查(參加報(bào)名的學(xué)生,每名學(xué)生必報(bào)且限報(bào)一個(gè)興趣小組),學(xué)校根據(jù)調(diào)查的數(shù)據(jù)繪制了以下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中提供的信息,解答下面的問(wèn)題:

          1)此次共調(diào)查了______名學(xué)生,扇形統(tǒng)計(jì)圖中航模部分的圓心角是______度;

          2)補(bǔ)全條形統(tǒng)計(jì)圖;

          3)現(xiàn)該校共有800名學(xué)生報(bào)名參加了這四個(gè)興趣小組,請(qǐng)你估計(jì)其中有多少名學(xué)生選修古詩(shī)詞欣賞”.

          【答案】(1)200;(2)補(bǔ)圖見(jiàn)解析;(3)120.

          【解析】

          1)利用“書(shū)法”興趣小組的人數(shù)除以“書(shū)法”興趣小組的人數(shù)所占的百分比即可求得本次調(diào)查的學(xué)生人數(shù);利用“航!迸d趣小組的人數(shù)除以本次調(diào)查的學(xué)生人數(shù)乘以360°,即可求得扇形統(tǒng)計(jì)圖中航模部分的圓心角的度數(shù);(2)利用本次調(diào)查的學(xué)生人數(shù)減去航模、古詩(shī)詞欣賞” “書(shū)法三個(gè)興趣小組的人數(shù),求得“音樂(lè)”興趣小組的人數(shù),補(bǔ)全統(tǒng)計(jì)圖即可;(3)用800乘以古詩(shī)詞欣賞興趣小組人數(shù)所占的百分比即可求解.

          1(人);;

          故答案為200;144°.

          2200-80-30-50=40(人),

          補(bǔ)圖如下:

          3800×=120(人)

          答:有120名學(xué)生選修古詩(shī)詞欣賞”.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛(ài)好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖,,要求每位學(xué)生只能選擇一種自己喜歡的球類),請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:

          (1)九(1)班的學(xué)生人數(shù)為   ,并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

          (2)扇形統(tǒng)計(jì)圖中m=   ,n=   ,表示“足球”的扇形的圓心角是   度;

          (3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下面是小東設(shè)計(jì)的“作圓的一個(gè)內(nèi)接矩形,并使其對(duì)角線的夾角為”的尺規(guī)作圖過(guò)程.

          已知:.求作:矩形,使得矩形內(nèi)接于,且其對(duì)角線的夾角為.

          作法:如圖,

          ①作的直徑;

          ②以點(diǎn)為圓心,長(zhǎng)為半徑畫(huà)弧,交直線上方的圓弧于點(diǎn);

          ③連接并延長(zhǎng)交于點(diǎn);

          ④連接.

          所以四邊形就是所求作的矩形,根據(jù)小東設(shè)計(jì)的尺規(guī)作圖過(guò)程,

          1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡).

          2)完成下面的證明.

          證明:∵點(diǎn)都在上,

          .

          同理.

          ∴四邊形是平行四邊形.

          的直徑,

          )(填推理的依據(jù)).

          ∴四邊形是矩形.

          .

          ∴四邊形是所求作的矩形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列說(shuō)法正確的是( )

          A. “打開(kāi)電視機(jī),正在播足球賽”是必然事件

          B. 甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

          C. 一組數(shù)據(jù)2,4,55,36的眾數(shù)和中位數(shù)都是5

          D. “擲一枚硬幣正面朝上的概率是0.5”表示每拋擲硬幣2次就有1次正面朝上

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】定義:點(diǎn)P在一次函數(shù)圖象上,點(diǎn)Q在反比例函數(shù)圖象上,若存在點(diǎn)P與點(diǎn)Q關(guān)于原點(diǎn)對(duì)稱,我們稱二次函數(shù)為一次函數(shù)與反比例函數(shù)的“新時(shí)代函數(shù)”,點(diǎn)P稱為“幸福點(diǎn)”。

          1)判斷是否存在“新時(shí)代函數(shù)”,如果存在,請(qǐng)求出“幸福點(diǎn)”坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由;

          2)若反比例函數(shù)與一次函數(shù)有兩個(gè)“幸福點(diǎn)”,,且,求其“新時(shí)代函數(shù)”的解析式;

          3)若一次函數(shù)和反比例函數(shù)在自變量x的值滿足的情況下,其“新時(shí)代函數(shù)”的最小值為3,求m的值。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,某小區(qū)有一長(zhǎng)為18米,寬為6米的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們面積之和為60平方米,兩塊綠地之間及周邊留有寬度相等的人行通道,則人行道的寬度為(。┟祝

          A. 2B. 1C. 81D. 8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在中,,,將繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)到的位置,此時(shí)點(diǎn)恰好在的延長(zhǎng)線上,則圖中陰影部分的面積為____(結(jié)果保留).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】有三個(gè)大小一樣的正六邊形,可按下列方式進(jìn)行拼接:

          方式1:如圖1;

          方式2:如圖2

          若有四個(gè)邊長(zhǎng)均為1的正六邊形,采用方式1拼接,所得圖案的外輪廓的周長(zhǎng)是_______.個(gè)邊長(zhǎng)均為1的正六邊形,采用上述兩種方式的一種或兩種方式混合拼接,若得圖案的外輪廓的周長(zhǎng)為18,則的最大值為__________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在單位長(zhǎng)度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過(guò)網(wǎng)格的交點(diǎn)A、B、C

          (1)請(qǐng)完成如下操作:

          ①以點(diǎn)O為原點(diǎn)、豎直和水平方向?yàn)檩S、網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系;

          ②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心D,并連結(jié)AD、CD

          (2)請(qǐng)?jiān)?/span>(1)的基礎(chǔ)上,完成下列填空:

          ①寫出點(diǎn)的坐標(biāo):C______、D______

          ②⊙D的半徑=______(結(jié)果保留根號(hào))

          ③求出弧AC的長(zhǎng).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案