日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,已知AB為⊙O的直徑,CD是弦,且AB⊥CD于點(diǎn)E.連接AC、OC、BC.
          (1)求證:∠ACO=∠BCD;
          (2)若EB=8cm,CD=24cm,求⊙O的直徑.

          【答案】
          (1)證明:連接OC,

          ∵AB為⊙O的直徑,

          ∴∠ACB=90°,∠BCD與∠ACE互余;又∠ACE與∠CAE互余

          ∴∠BCD=∠BAC.

          ∵OA=OC,∴∠OAC=∠OCA.

          ∴∠ACO=∠BCD


          (2)解:設(shè)⊙O的半徑為Rcm,則OE=OB﹣EB=(R﹣8)cm,

          CE= CD= ×24=12cm,

          在Rt△CEO中,由勾股定理可得

          OC2=OE2+CE2,即R2=(R﹣8)2+122

          解得R=13,∴2R=2×13=26cm.

          答:⊙O的直徑為26cm.


          【解析】(1)根據(jù)垂徑定理和圓的性質(zhì),同弧的圓周角相等,又因?yàn)椤鰽OC是等腰三角形,即可求證.(2)根據(jù)勾股定理,求出各邊之間的關(guān)系,即可確定半徑.
          【考點(diǎn)精析】本題主要考查了勾股定理的概念和垂徑定理的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧才能正確解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線L:y=﹣ (x﹣t)(x﹣t+4)(常數(shù)t>0)與x軸從左到右的交點(diǎn)為B,A,過(guò)線段OA的中點(diǎn)M作MP⊥x軸,交雙曲線y= (k>0,x>0)于點(diǎn)P,且OAMP=12.

          (1)求k的值;
          (2)當(dāng)t=1時(shí),求AB長(zhǎng),并求直線MP與L對(duì)稱軸之間的距離;
          (3)把L在直線MP左側(cè)部分的圖象(含與直線MP的交點(diǎn))記為G,用t表示圖象G最高點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,△ABC中,點(diǎn)D、E分別是AB、AC的中點(diǎn),則下列結(jié)論:①BC=2DE;②△ADE∽△ABC;③ .其中正確的有(
          A.3個(gè)
          B.2個(gè)
          C.1個(gè)
          D.0個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在等邊△ABC中,E為BC邊上一點(diǎn),G為BC延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)E作∠AEM=60°,交∠ACG的平分線于點(diǎn)M.
          (1)如圖(1),當(dāng)點(diǎn)E在BC邊的中點(diǎn)位置時(shí),通過(guò)測(cè)量AE,EM的長(zhǎng)度,猜想AE與EM滿足的數(shù)量關(guān)系是;

          (2)如圖(2),小晏通過(guò)觀察、實(shí)驗(yàn),提出猜想:當(dāng)點(diǎn)E在BC邊的任意位置時(shí),始終有AE=EM.小晏把這個(gè)猜想與同學(xué)進(jìn)行交流,通過(guò)討論,形成了證明該猜想的幾種想法:
          想法1:在BA上取一點(diǎn)H使AH=CE,連接EH,要證AE=EM,只需證△AHE≌△ECM.
          想法2:找點(diǎn)A關(guān)于直線BC的對(duì)稱點(diǎn)F,連接AF,CF,EF.(易證∠BCF+∠BCA+ACM=180°,所以M,C,F(xiàn)三點(diǎn)在同一直線上)要證AE=EM,只需證△MEF為等腰三角形.
          想法3:將線段BE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到線段BF,連接CF,EF,要證AE=EM,只需證四邊形MCFE為平行四邊形.
          請(qǐng)你參考上面的想法,幫助小晏證明AE=EM.(一種方法即可)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= 的圖象交于A(2,3),B(﹣3,n)兩點(diǎn).
          (1)求一次函數(shù)和反比例函數(shù)的解析式;
          (2)若P是y軸上一點(diǎn),且滿足△PAB的面積是5,直接寫出點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,點(diǎn)M是△ABC內(nèi)一點(diǎn),過(guò)點(diǎn)M分別作直線平行于△ABC的各邊,所形成的三個(gè)小三角形△1 , △2 , △3(圖中陰影部分)的面積分別是4,9和16,則△ABC的面積是(
          A.49
          B.64
          C.100
          D.81

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,一艘海輪位于燈塔P的南偏東60°方向,距離燈塔40海里的A處,它計(jì)劃沿正北方向航行,去往位于燈塔P的北偏東45°方向上的B處.問(wèn)B處距離燈塔P有多遠(yuǎn)?(結(jié)果精確到0.1海里) (參考數(shù)據(jù): ≈1.414, ≈1.732, ≈2.449)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下列說(shuō)法中,正確的是(
          A.“射擊運(yùn)動(dòng)員射擊一次,命中靶心”是必然事件
          B.不可能事件發(fā)生的概率為0
          C.隨機(jī)事件發(fā)生的概率為
          D.投擲一枚質(zhì)地均勻的硬幣100次,正面朝上的次數(shù)一定為50次

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,反比例函數(shù)y= (x>0)的圖象經(jīng)過(guò)點(diǎn)A(2 ,1),射線AB與反比例函數(shù)圖象交于另一點(diǎn)B(1,a),射線AC與y軸交于點(diǎn)C,∠BAC=75°,AD⊥y軸,垂足為D.
          (1)求k的值;
          (2)求tan∠DAC的值及直線AC的解析式;
          (3)如圖2,
          M是線段AC上方反比例函數(shù)圖象上一動(dòng)點(diǎn),過(guò)M作直線l⊥x軸,與AC相交于點(diǎn)N,連接CM,求△CMN面積的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案