日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知:l1l2l3l4,平行線l1l2、l2l3、l3l4之間的距離分別為d1、d2、d3,且d1=d3=1,d2=2.我們把四個(gè)頂點(diǎn)分別在l1、l2l3、l4這四條平行線上的四邊形稱為“格線四邊形”.

          (1)如圖1,正方形ABCD為“格線四邊形”,則正方形ABCD的邊長為  

          (2)矩形ABCD為“格線四邊形”,其長:寬=2:1,求矩形ABCD的寬.(可用備用圖)

          (3)如圖1,EG過正方形ABCD的頂點(diǎn)D且垂直l1于點(diǎn)E,分別交l2l4于點(diǎn)F,G.將∠AEG繞點(diǎn)A順時(shí)針旋轉(zhuǎn)30°得到∠AED′(如圖2),點(diǎn)D′在直線l3上,以AD′為邊在ED′左側(cè)作菱形ABCD′,使B′,C′分別在直線l2l4上,求菱形ABCD′的邊長.

          【答案】1

          2,

          3

          【解析】試題分析: (1)利用已知得出△AED≌△DGCAAS),即可得出AE,以及正方形的邊長;

          2)如圖2過點(diǎn)BBE⊥L1于點(diǎn)E,反向延長BEL4于點(diǎn)F,則BE=1,BF=3,由四邊形ABCD是矩形,∠ABC=90°,∠ABE+∠FBC=90°,根據(jù)∠ABE+∠EAB=90°,得到∠FBC=∠EAB,然后分類討論,求得矩形的寬.

          3)首先過點(diǎn)E′ON垂直于l1分別交l1,l2于點(diǎn)ON,∠AEO=30°,則∠ED′N=60°,可求出AE=1EO,ENED′的長,進(jìn)而由勾股定理可知菱形的邊長.

          解:(1∵l1∥l2∥l3∥l4,∠AED=90°

          ∴∠DGC=90°,

          四邊形ABCD為正方形

          ∴∠ADC=90°,AD=CD,∵∠ADE+∠2=90°

          ∴∠1+∠2=90°,

          ∴∠1=∠ADE,

          ∵l3∥l4

          ∴∠1=∠DCG,

          ∠ADE=∠DCG,

          △AED△DGC中,

          ,

          ∴△AED≌△GDCAAS),

          ∴AE=GD=1,ED=GC=3,

          AD=,

          故答案為:

          2)如圖2過點(diǎn)BBE⊥L1于點(diǎn)E,反向延長BEL4于點(diǎn)F

          BE=1,BF=3,

          四邊形ABCD是矩形,

          ∴∠ABC=90°,

          ∴∠ABE+∠FBC=90°,

          ∵∠ABE+∠EAB=90°,

          ∴∠FBC=∠EAB,

          當(dāng)ABBC時(shí),AB=BC,

          AE=BF=,

          AB=;

          如圖3當(dāng)ABBC時(shí),

          同理可得:BC=

          矩形的寬為: , ;

          3)如圖4過點(diǎn)E′ON垂直于l1分別交l1,l4于點(diǎn)O,N

          ∵∠OAE′=30°,則∠E′FN=60°

          ∵AE′=AE=1

          E′O=,E′N=,E′D′=,

          由勾股定理可知菱形的邊長為:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】尺規(guī)作圖作∠AOB的平分線方法如下:以O為圓心,任意長為半徑畫弧交OA,OBC,D,再分別以點(diǎn)C,D為圓心,以大于CD長為半徑畫弧,兩弧交于點(diǎn)P,作射線OP.由作法得△OCP≌△ODP的根據(jù)是( )

          A. SAS B. ASA C. AAS D. SSS

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列說法:①a為任意有理數(shù),a2+1總是正數(shù);②如果a+|a|=0,則a<0;③兩點(diǎn)確定一條直線;④若MA=MB,則點(diǎn)M是線段AB的中點(diǎn).其中正確的有(
          A.4個(gè)
          B.3個(gè)
          C.2個(gè)
          D.1個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在﹣3,2,﹣1,0這四個(gè)數(shù)中,比﹣2小的數(shù)是(
          A.﹣3
          B.2
          C.﹣1
          D.0

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖矩形ABCD中,AD=5,AB=7,點(diǎn)EDC上一個(gè)動(dòng)點(diǎn),把△ADE沿AE折疊,當(dāng)點(diǎn)D的對應(yīng)點(diǎn)D′落在∠ABC的角平分線上時(shí),DE的長為__

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一個(gè)不透明的布袋里裝有三個(gè)球,其中2個(gè)紅球,1個(gè)白球,它們除顏色不同外其余都相同:

          (1)摸出一個(gè)球記下顏色后放回,并攪勻,再摸出一個(gè)球,求兩次摸出的球恰好顏色不同的概率(要求畫樹狀圖或列表);

          (2)現(xiàn)再將n個(gè)白球放入布袋中攪勻后使摸出一個(gè)球是白球的概率為,求n的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】李明準(zhǔn)備進(jìn)行如下操作試驗(yàn),把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個(gè)正方形

          (1)要使這兩個(gè)正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?

          (2)李明認(rèn)為這兩個(gè)正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說法正確嗎?請說明理由

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A2,1),B-1,3),C-3,2

          1作出ABC關(guān)于x軸對稱的;

          2)點(diǎn)的坐標(biāo)為 ,點(diǎn)的坐標(biāo)為 ;

          3)點(diǎn)Paa-2)與點(diǎn)Q關(guān)y軸對稱,若PQ=8,則點(diǎn)P的坐標(biāo)為 ;

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】【問題提出】

          學(xué)習(xí)了三角形全等的判定方法(即“SSS”“ASA”、“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對兩個(gè)三角形滿足兩邊和其中一邊的對角對應(yīng)相等的情形進(jìn)行研究.

          【初步思考】

          我們不妨將問題用符號語言表示為:在△ABC△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角三種情況進(jìn)行探究.

          【深入探究】

          第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF

          如圖,在△ABC△DEF,AC=DFBC=EF,∠B=∠E=90°,根據(jù)   ,可以知道Rt△ABC≌Rt△DEF

          第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF

          如圖,在△ABC△DEF,AC=DF,BC=EF,∠B=∠E,且∠B∠E都是鈍角,請你證明:△ABC≌△DEF(提示:過點(diǎn)CCG⊥ABAB的延長線于G,過點(diǎn)FFH⊥DEDE的延長線于H).

          第三種情況:當(dāng)∠B是銳角時(shí),△ABC△DEF不一定全等.

          △ABC△DEF,AC=DF,BC=EF∠B=∠E,且∠B∠E都是銳角,請你利用圖,在圖中用尺規(guī)作出△DEF,使△DEF△ABC不全等.

          查看答案和解析>>

          同步練習(xí)冊答案