日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在△ABC中,ABAC,AD為邊BC上的中線,點EAD上,以點A為圓心,AB長為半徑畫弧,交BE的延長線于點F,點GEF上,且∠EAG=∠CAF,連接CE

          1)依題意補全圖形;

          2)求證:FGCE;

          3)若EF平分∠AEC,則∠BAE與∠ABE滿足的等量關(guān)系為   

          【答案】1)詳見解析;(2)詳見解析;(3)∠BAE+ABE60°.

          【解析】

          1)依題意補全圖形即可;(2)由等腰三角形的性質(zhì)得出∠ABE=∠AFG,∠EAB=∠GAF,證明EAB≌△GAFASA),得出BEFG,證明EAB≌△EACSAS),得出BECE,即可得出結(jié)論;(3)由(2)得∠CAE=∠BAE,EAB≌△GAF,EAB≌△EAC,由全等三角形的性質(zhì)得出AEAG,∠ABE=∠ACE,由等腰三角形的性質(zhì)得出∠AEG=∠AGE,證出∠AEG=∠EAG=∠AGE,得出AGE是等邊三角形,由等邊三角形的性質(zhì)得出∠AEG60°,由三角形的外角性質(zhì)即可得出結(jié)論.

          1)解:依題意補全圖形,如圖所示:

          2)證明:由題意得:ABACAF,

          ∴∠ABE=∠AFG,

          ∵∠EAC+CAG=∠EAG,∠CAG+GAF=∠CAF,∠EAG=∠CAF,

          ∴∠EAC=∠GAF

          ABAC,AD為邊BC上的中線,

          ∴∠EAC=∠EAB,

          ∴∠EAB=∠GAF

          EABGAF中,

          ∴△EAB≌△GAFASA),

          BEFG,

          EABEAC中,,

          ∴△EAB≌△EACSAS),

          BECE,

          FGCE;

          3)解:由(2)得:∠CAE=∠BAEEAB≌△GAF,EAB≌△EAC

          AEAG,∠ABE=∠ACE,

          ∴∠AEG=∠AGE,

          EF平分∠AEC,

          ∴∠AEG=∠CEG,

          ∴∠AGE=∠CEG,

          AGCE,

          ∴∠GAC=∠ACE,

          ∴∠ABE=∠GAC,

          ∵∠AEG=∠ABE+BAE,∠EAG=∠EAC+GAC

          ∴∠AEG=∠EAG=∠AGE,

          ∴△AGE是等邊三角形,

          ∴∠AEG60°,

          ∴∠BAE+ABE60°

          故答案為:∠BAE+ABE60°

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,邊長一定的正方形ABCD,Q是CD上一動點,AQ交BD于點M,過M作MN⊥AQ交BC于N點,作NP⊥BD于點P,連接NQ,下列結(jié)論:①AM=MN;

          ②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知點A是雙曲線在第一象限的分支上的一個動點,連結(jié)AO并延長交另一分支于點B,以AB為斜邊作等腰RtABC,點C在第四象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在第四象限,且雙曲線始終經(jīng)過點C,則k的值為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某商場購進甲、乙兩種空調(diào)共50臺.已知購進一臺甲種空調(diào)比購進一臺乙種空調(diào)進價少0.3萬元;用20萬元購進甲種空調(diào)數(shù)量是用40萬元購進乙種空調(diào)數(shù)量的2倍.請解答下列問題:

          1)求甲、乙兩種空調(diào)每臺進價各是多少萬元?

          2)若商場預(yù)計投入資金不少于10萬元,且購進甲種空調(diào)至少31臺,商場有哪幾種購進方案?

          3)在(2)條件下,若甲種空調(diào)每臺售價1100元,乙種空調(diào)每臺售價4300元,甲、乙空調(diào)各有一臺樣機按八折出售,其余全部標(biāo)價售出,商場從銷售這50臺空調(diào)獲利中拿出2520元作為員工福利,其余利潤恰好又可以購進以上空調(diào)共2臺.請直接寫出該商場購進這50臺空調(diào)各幾臺.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某蔬菜加工公司先后兩次收購某時令蔬菜200噸,第一批蔬菜價格為2000/噸,因蔬菜大量上市,第二批收購時價格變?yōu)?/span>500/噸,這兩批蔬菜共用去16萬元.

          (1)求兩批次購蔬菜各購進多少噸?

          (2)公司收購后對蔬菜進行加工,分為粗加工和精加工兩種:粗加工每噸利潤400元,精加工每噸利潤800元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤,精加工數(shù)量應(yīng)為多少噸?最大利潤是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,,,都是等邊三角形,其邊長依次為2,4,6,其中點的坐標(biāo)為,點的坐標(biāo)為,點的坐標(biāo)為,點的坐標(biāo)為,,按此規(guī)律排下去,則點的坐標(biāo)為( )

          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:

          設(shè)(其中均為整數(shù)),則有

          .這樣小明就找到了一種把部分的式子化為平方式的方法.

          請你仿照小明的方法探索并解決下列問題:

          當(dāng)均為正整數(shù)時,若,用含mn的式子分別表示,得      ;

          2)利用所探索的結(jié)論,找一組正整數(shù),填空:    (      )2;

          3)若,且均為正整數(shù),求的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(閱讀理解)

          已知:如圖,等腰直角三角形中,,平分線,交邊于點.

          求證:.

          證明:在上截取,連接,

          則由已知條件易知:.

          ,

          ,∴是等腰直角三角形,

          .

          (數(shù)學(xué)思考)

          現(xiàn)將原題中的平分線,交邊于點”換成“的外角平分線,交邊的延長線于點,如圖,其他條件不變,請你猜想線段之間的數(shù)量關(guān)系,并證明你的猜想.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】矩形ABCDCEFG如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=________

          查看答案和解析>>

          同步練習(xí)冊答案