日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在ABC中,∠ACB=90°,且DEABC的中位線.延長(zhǎng)EDF,使DF=ED,連接FC,F(xiàn)B.回答下列問(wèn)題:

          (1)試說(shuō)明四邊形BECF是菱形.

          (2)當(dāng)的大小滿足什么條件時(shí),菱形BECF是正方形?請(qǐng)回答并證明你的結(jié)論.

          【答案】(1)見(jiàn)解析;(2)當(dāng)∠A=45°時(shí),菱形BECF是正方形.

          【解析】(1)根據(jù)已知條件發(fā)現(xiàn):可以證明四邊形的對(duì)角線互相垂直平分即是一個(gè)菱形.

          (2)菱形要是一個(gè)正方形,則根據(jù)正方形的對(duì)角線平分一組對(duì)角,即∠BEF=45°,則∠A=45°.

          (1)證明:∵DEABC的中位線,

          DEAC.

          又∵∠ACB=90°,

          EFBC.

          又∵BD=CD,DF=ED,

          ∴四邊形BECF是菱形.

          (2)解:要使菱形BECF是正方形

          則有BECE

          EABC的邊AB的中點(diǎn)

          ∴當(dāng)CBA是等腰三角形時(shí),滿足條件

          ∵∠BCA=90°

          ∴△CBA是等腰直角三角形

          ∴當(dāng)∠A=45°時(shí),菱形BECF是正方形.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】三五三七鞋廠為了了解初中學(xué)生穿鞋的鞋號(hào)情況,對(duì)紅華中學(xué)初二(1)班的20名男生所穿鞋號(hào)統(tǒng)計(jì)如下表:

          鞋號(hào)

          23.5

          24

          24.5

          25

          25.5

          26

          人數(shù)

          3

          4

          4

          7

          1

          1

          (1)寫出男生鞋號(hào)數(shù)據(jù)的平均數(shù),中位數(shù),眾數(shù);

          (2)在平均數(shù),中位數(shù)和眾數(shù)中,鞋廠最感興趣的是什么?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】圖(a)、圖(b)、圖(c)是三張形狀、大小完全相同的方格紙,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1.請(qǐng)?jiān)趫D(a)、圖(b)、圖(c)中,分別畫出符合要求(1),(2),(3)的圖形,所畫圖形各頂點(diǎn)必須與方格紙中的小正方形頂點(diǎn)重合.

          (1)畫一個(gè)底邊為4,面積為8的等腰三角形;

          (2)畫一個(gè)面積為10的等腰直角三角形;

          (3)畫一個(gè)面積為12的平行四邊形。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+6x+c(a≠0)交y軸于A點(diǎn),交x軸于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知A點(diǎn)坐標(biāo)為(0,﹣5),點(diǎn)B的坐標(biāo)為(1,0).

          (1)求此拋物線的解析式及定點(diǎn)坐標(biāo);
          (2)過(guò)點(diǎn)B作線段AB的垂線交拋物線于點(diǎn)D,如果以點(diǎn)C為圓心的圓與直線BD相切,請(qǐng)判斷拋物線的對(duì)稱軸與⊙C的位置關(guān)系,并說(shuō)明理由;
          (3)在拋物線上是否存在一點(diǎn)P,使△ACP是以AC為直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,⊙O的半徑OD⊥弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.若AB=8,CD=2,則EC的長(zhǎng)為(
          A.2
          B.8
          C.
          D.2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,矩形ABCD的對(duì)角線相交于點(diǎn)O,DE∥AC,CE∥BD.
          (1)求證:四邊形OCED是菱形;
          (2)若∠ACB=30°,菱形OCED的面積為10 ,求AC的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直線、相交于點(diǎn),平分,平分

          的度數(shù);

          的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】初中學(xué)生對(duì)待學(xué)習(xí)的態(tài)度一直是教育工作者極為關(guān)注的一個(gè)問(wèn)題.為此市教育局對(duì)本市部分學(xué)校的八年級(jí)學(xué)生對(duì)待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級(jí),A級(jí):喜歡;B級(jí):不太喜歡;C級(jí):不喜歡),并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
          (1)此次抽樣調(diào)查中,共調(diào)查了名學(xué)生;
          (2)將圖①補(bǔ)充完整;
          (3)求出圖②中C級(jí)所占的圓心角的度數(shù);
          (4)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該市近80000名初中生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級(jí)和B級(jí))?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖, ABC中,AC=3、AB=4、BC=5, PBC上一動(dòng)點(diǎn),PGAC于點(diǎn)G,PHAB

          于點(diǎn)H,MGH的中點(diǎn),P在運(yùn)動(dòng)過(guò)程中PM的最小值為(

          A. 2.4 B. 1.4

          C. 1.3 D. 1.2

          【答案】D

          【解析】分析: AC=3、AB=4、BC=5,AC2+AB2=BC2,則A=90°,再結(jié)合PGACPHAB,可證四邊形AGPH是矩形;連接AP,可知當(dāng)APBC時(shí)AP最短,結(jié)合矩形的兩對(duì)角線相等和面積法,求出GH的值,

          詳解:∵AC=3、AB=4、BC=5,

          AC2=9,AB2=16,BC2=25,

          AC2+AB2=BC2,

          ∴∠A=90°.

          PGAC,PHAB

          ∴∠AGP=AHP=90° ,

          四邊形AGPH是矩形.

          連接AP

          GH=AP.

          ∵當(dāng)APBC時(shí),AP最短,

          3×4=5AP

          AP=,

          PM的最小值為1.2.

          故選D.

          點(diǎn)睛: 本題考查了勾股定理的逆定理,矩形的判定與性質(zhì),垂線段最短,面積法求線段的長(zhǎng),需結(jié)合矩形的判定方法,矩形的性質(zhì)以及三角形面積的知識(shí)求解;確定出點(diǎn)P的位置是解答本題的關(guān)鍵.

          型】單選題
          結(jié)束】
          18

          【題目】計(jì)算:

          (1) (2)

          (3)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案