日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2002•揚州)如圖,在平面直角坐標(biāo)系中,以點A(-1,0)為圓心,AO為半徑的圓交x軸負(fù)半軸于另一點B,點F在⊙A上,過點F的切線交y軸正半軸于點E,交x軸正半軸于點C,已知CF=
          (1)求點C的坐標(biāo);
          (2)求證:AE∥BF;
          (3)延長BF交y軸于點D,求點D的坐標(biāo)及直線BD的解析式.

          【答案】分析:(1)因為以點A(-1,0)為圓心,AO為半徑的圓交x軸負(fù)半軸于另一點B,點F在⊙A上,過點F的切線交y軸正半軸于點E,交x軸正半軸于點C,可連接AF,由切線的性質(zhì)可得∠AFC=90°,因為CF=,由勾股定理可求AC===3,進(jìn)而求出C的坐標(biāo);
          (2)根據(jù)OA⊥OD,AO是半徑,可得OD是⊙A的切線,因為EF是⊙A的切線,所以EF=EO,進(jìn)而可證△AFE≌△AOE,
          得∠EAC=∠FAE=∠FAO,因為∠B=∠FAO,所以∠B=∠EAC,AE∥BF.
          (3)可作FM⊥BC于M,利用直角三角形的面積可求FM==,利用勾股定理可求MC==,進(jìn)而求出OM=MC-OC,寫出F的坐標(biāo)即可;
          因為延長BF交y軸于點D,已知B、F的坐標(biāo),所以可設(shè)BF為y=kx+b,利用待定系數(shù)法求出直線BD的解析式為y=x+,令x=0,求出y的值,即可求出D的坐標(biāo).
          解答:(1)解:因為以點A(-1,0)為圓心,AO為半徑的圓交x軸負(fù)半軸于另一點B,點F在⊙A上,過點F的切線交y軸正半軸于點E,交x軸正半軸于點C,連接AF.
          所以O(shè)A=AB=AF=1,∠AFC=90°,
          因為CF=,由勾股定理得AC===3.
          所以O(shè)C=3-1=2,
          所以C(2,0).

          (2)證明:∵OA⊥OD,AO是半徑,
          ∴OD是⊙A的切線.
          ∵EF是⊙A的切線,
          ∴EF=EO
          ∵AE=AE,AF=AO,
          ∴△AFE≌△AOE.
          ∴∠EAC=∠FAE=∠FAO,
          ∵∠B=∠FAO,
          ∴∠B=∠EAC.
          ∴AE∥BF.

          (3)解:作FM⊥BC于M,因為FM==,MC==,OM=MC-OC=
          ∴F(-,).
          設(shè)BF為y=kx+b,

          解之,得
          所以直線BD的解析式為y=x+
          令x=0,則y=,所以D(0,).
          點評:本題需綜合利用待定系數(shù)法、勾股定理、圓的切線來解決問題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

          (2002•揚州)如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點A,交x軸正半軸于點B,交y軸正半軸于點D,O為坐標(biāo)原點,拋物線上一點C的橫坐標(biāo)為1.
          (1)求A,B兩點的坐標(biāo);
          (2)求證:四邊形ABCD的等腰梯形;
          (3)如果∠CAB=∠ADO,求α的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

          (2002•揚州)如圖,在平面直角坐標(biāo)系中,以點A(-1,0)為圓心,AO為半徑的圓交x軸負(fù)半軸于另一點B,點F在⊙A上,過點F的切線交y軸正半軸于點E,交x軸正半軸于點C,已知CF=
          (1)求點C的坐標(biāo);
          (2)求證:AE∥BF;
          (3)延長BF交y軸于點D,求點D的坐標(biāo)及直線BD的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2002年江蘇省揚州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2002•揚州)如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點A,交x軸正半軸于點B,交y軸正半軸于點D,O為坐標(biāo)原點,拋物線上一點C的橫坐標(biāo)為1.
          (1)求A,B兩點的坐標(biāo);
          (2)求證:四邊形ABCD的等腰梯形;
          (3)如果∠CAB=∠ADO,求α的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2002年江蘇省揚州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          (2002•揚州)如圖所示,破殘的圓形輪片上,弦AB的垂直平分線交弧AB于點C,交弦AB于點D.已知:AB=24cm,CD=8cm.
          (1)求作此殘片所在的圓(不寫作法,保留作圖痕跡);
          (2)求(1)中所作圓的半徑.

          查看答案和解析>>

          同步練習(xí)冊答案