日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,DEABE,DFACF,若BDCDBECF.

          (1)求證:AD平分∠BAC.

          (2)已知AC14,BE2,求AB的長.

          【答案】(1)證明見解析;(2)AB=10.

          【解析】

          (1)求出∠E=∠DFC90°,根據(jù)全等三角形的判定定理得出RtBEDRtCFD,推出DEDF,根據(jù)角平分線性質(zhì)得出即可;

          (2)根據(jù)全等三角形的性質(zhì)得出AEAF,由線段的和差關(guān)系求出答案.

          (1)證明:∵DEAB,DFAC

          ∴∠E=∠DFC90°,

          BDCD,BECF

          RtBEDRtCFD(HL),

          DEDF,

          DEAB,DFAC

          AD平分∠BAC;

          (2)DEDF,ADAD,

          RtADERtADF(HL)

          AEAF,

          ABAEBEAFBEACCFBE

          AB142210.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩人共同計算一道整式:(x+a)(2x+b),由于甲抄錯了a的符號,得到的結(jié)果是2x2-7x+3,乙漏抄了第二個多項式中x的系數(shù),得到的結(jié)果是x2+2x-3

          1)求a,b的值;(2)請計算這道題的正確結(jié)果

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,菱形OABC的頂點A的坐標(biāo)為(3,4),頂點Cx軸的正半軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過頂點B,則反比例函數(shù)的表達式為( 。

          A. y= B. y= C. y= D. y=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.

          (1)若某反比例函數(shù)的圖象的一個分支恰好經(jīng)過點A,求這個反比例函數(shù)的解析式;

          (2)若把含30°角的直角三角板繞點O按順時針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結(jié)果保留π)

          【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.

          【解析】分析:(1)根據(jù)tan30°=,求出AB,進而求出OA,得出A的坐標(biāo),設(shè)過A的雙曲線的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.

          本題解析:

          (1)在Rt△OBA中,∠AOB=30°,OB=3

          ∴AB=OB·tan 30°=3.

          ∴點A的坐標(biāo)為(3,3).

          設(shè)反比例函數(shù)的解析式為y= (k≠0),

          ∴3,∴k=9,則這個反比例函數(shù)的解析式為y=.

          (2)在Rt△OBA中,∠AOB=30°,AB=3,

          sin ∠AOB=,即sin 30°=,

          ∴OA=6.

          由題意得:∠AOC=60°,S扇形AOA′=6π.

          Rt△OCD中,∠DOC=45°,OC=OB=3

          ∴OD=OC·cos 45°=3×.

          ∴SODCOD2.

          ∴S陰影=S扇形AOA′-SODC=6π.

          點睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關(guān)鍵.

          型】解答
          結(jié)束】
          26

          【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.

          (1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.

          ① 求證:△OCP∽△PDA;

          ② 若△OCP與△PDA的面積比為1:4,求邊AB的長.

          (2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】海南建省30年來,各項事業(yè)取得令人矚目的成就,以2016年為例,全省社會固定資產(chǎn)總投資約3730億元,其中包括中央項目、省屬項目、地(市)屬項目、縣(市)屬項目和其他項目.圖1、圖2分別是這五個項目的投資額不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請完成下列問題:

          (1)在圖1中,先計算地(市)屬項目投資額為   億元,然后將條形統(tǒng)計圖補充完整;

          (2)在圖2中,縣(市)屬項目部分所占百分比為m%、對應(yīng)的圓心角為β,則m=   ,β=   度(m、β均取整數(shù)).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖是拋物線y1=ax2+bx+ca≠0)圖象的一部分,拋物線的頂點坐標(biāo)A13),與x軸的一個交點B40),直線y2=mx+nm≠0)與拋物線交于A,B兩點,下列結(jié)論:

          ①2a+b=0②abc0;方程ax2+bx+c=3有兩個相等的實數(shù)根;拋物線與x軸的另一個交點是(﹣1,0);當(dāng)1x4時,有y2y1

          其中正確的是( )

          A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在一次籃球比賽中,如圖隊員甲正在投籃.已知球出手時離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時達到最大高度4 m,設(shè)籃球運行軌跡為拋物線,籃圈距地面3 m.

          (1)建立如圖所示的平面直角坐標(biāo)系,問此球能否準(zhǔn)確投中?

          (2)此時,對方隊員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】完全相同的4個小球,上面分別標(biāo)有數(shù)字1、-1、2-2,將其放入一個不透明的盒子中搖勻,再從中隨機摸球兩次(第一次摸出球后放回?fù)u勻).把第一次、第二次摸到的球上標(biāo)有的數(shù)字分別記作,,以,分別作為一個點的橫坐標(biāo)與縱坐標(biāo),定義點在反比例函數(shù)上為事件為整數(shù)),當(dāng)的概率最大時,則的所有可能的值為__________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】近幾年,國家大力提倡從純?nèi)加推囅蛐履茉雌囖D(zhuǎn)型.某汽車制造企業(yè)推出了一款新型油電混合動力汽車(在行駛過程中,既可以使用汽油驅(qū)動汽年,也可以使用電力驅(qū)動汽車,汽油驅(qū)動和電力驅(qū)動不同時工作).經(jīng)試驗,該型汽車從甲地駛向乙地,只用汽油進行驅(qū)動,費用為56元,只用電力進行驅(qū)動,費用為20.已知每行駛1千米,只用汽油驅(qū)動的費用比只用電力驅(qū)動的費用多0.36.

          (1)求每行駛1千米,只用汽油驅(qū)動的費用.

          (2)要使從甲地到乙地所需要的燃油費用和電力費用不超過38元,則至少要用電力驅(qū)動行駛多少千米?

          查看答案和解析>>

          同步練習(xí)冊答案