日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線過點(diǎn)A(1,0),頂點(diǎn)為B,且拋物線不經(jīng)過第三象限。
          (1)使用a、c表示b;
          (2)判斷點(diǎn)B所在象限,并說明理由;
          (3)若直線經(jīng)過點(diǎn)B,且于該拋物線交于另一點(diǎn)C(),求當(dāng)x≥1時(shí)y1的取值范圍。
          (1)(2)頂點(diǎn)B落在第四象限(3)y1≥-2
          解:(1)∵過點(diǎn)A(1,0),∴,即。
          (2)點(diǎn)B在第四象限,理由如下:
          ∵圖象經(jīng)過點(diǎn)A(1,0),且拋物線不經(jīng)過第三象限,∴拋物線開口方向向上,則有。
          ∵圖象與x軸的相交,則有:。
          由(1),即。
          。
          ,∴,拋物線與x軸的交點(diǎn)有兩個(gè)交點(diǎn)。
          ∵拋物線不經(jīng)過第三象限,∴。
          ∴頂點(diǎn)B落在第四象限。
          (3)∵拋物線經(jīng)過點(diǎn)A(1,0)和點(diǎn)C(),
          , 解得:。
          ∴C()。
          ,∴頂點(diǎn)B的坐標(biāo)為。
          ∵點(diǎn)B 、C()經(jīng)過直線
          ,解得:。
          ,∴。
          代入得:,解得:。
          當(dāng)時(shí),,與題設(shè)不符,舍去。
          ,
          ∴拋物線解析式為 (如圖所示)。
          ∴拋物線在(2,-2)取得最小值。
          ∴當(dāng)x≥1時(shí),y1的取值范圍為y1≥-2。

          (1)將A(1,0)代入即可求得結(jié)果。
          (2)由已知,得出拋物線與x軸有兩個(gè)交點(diǎn),且兩個(gè)交點(diǎn)都在x軸正半軸上,即可作出判斷。
          (3)求出拋物線解析式,根據(jù)二次函數(shù)最值班性質(zhì)得出結(jié)論。
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線與x軸相交于O、B,頂點(diǎn)為A,連接OA.

          (1)求點(diǎn)A的坐標(biāo)和∠AOB的度數(shù);
          (2)若將拋物線向右平移4個(gè)單位,再向下平移2個(gè)單位,得到拋物線m,其頂點(diǎn)為點(diǎn)C.連接OC和AC,把△AOC沿OA翻折得到四邊形ACOC′.試判斷其形狀,并說明理由;
          (3)在(2)的情況下,判斷點(diǎn)C′是否在拋物線上,請(qǐng)說明理由;
          (4)若點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),試探究在拋物線m上是否存在點(diǎn)Q,使以點(diǎn)O、P、C、Q為頂點(diǎn)的四邊形是平行四邊形,且OC為該四邊形的一條邊?若存在,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交C點(diǎn),點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,3)它的對(duì)稱軸是直線

          (1)求拋物線的解析式;
          (2)M是線段AB上的任意一點(diǎn),當(dāng)△MBC為等腰三角形時(shí),求M點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知正方形ABCD的邊長為4,對(duì)稱中心為點(diǎn)P,點(diǎn)F為BC邊上一個(gè)動(dòng)點(diǎn),點(diǎn)E在AB邊上,且滿足條件∠EPF=45°,圖中兩塊陰影部分圖形關(guān)于直線AC成軸對(duì)稱,設(shè)它們的面積和為S1

          (1)求證:∠APE=∠CFP;
          (2)設(shè)四邊形CMPF的面積為S2,CF=x,
          ①求y關(guān)于x的函數(shù)解析式和自變量x的取值范圍,并求出y的最大值;
          ②當(dāng)圖中兩塊陰影部分圖形關(guān)于點(diǎn)P成中心對(duì)稱時(shí),求y的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          把拋物線的圖象向右平移3個(gè)單位,再向下平移2個(gè)單位,所得圖象的解析式為,則(    ).
          A.12   B.9C.  D.10

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          在平面直角坐標(biāo)系xOy中,拋物線)與y軸交于點(diǎn)A,其對(duì)稱軸與x軸交于點(diǎn)B。

          (1)求點(diǎn)A,B的坐標(biāo);
          (2)設(shè)直線l與直線AB關(guān)于該拋物線的對(duì)稱軸對(duì)稱,求直線l的解析式;
          (3)若該拋物線在這一段位于直線l的上方,并且在這一段位于直線AB的下方,求該拋物線的解析式。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          在二次函數(shù)的圖像中,若的增大而增大,則的取值范圍是
          A.B.C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          隨著“六一”臨近,兒童禮品開始熱銷,某廠每月固定生產(chǎn)甲、乙兩種禮品共100萬件,甲禮品每件成本15元,乙禮品每件成本12元,現(xiàn)甲禮品每件售價(jià)22元,乙禮品每件售價(jià)18元,且都能全部售出。
          (1)若某月銷售收入2000萬元,則該月甲、乙禮品的產(chǎn)量分別是多少?
          (2)如果每月投入的總成本不超過1380萬元,應(yīng)怎樣安排甲、乙禮品的產(chǎn)量,可使所獲得的利潤最大?
          (3)該廠在銷售中發(fā)現(xiàn):甲禮品售價(jià)每提高1元,銷量會(huì)減少4萬件,乙禮品售價(jià)不變,不管多少產(chǎn)量都能賣出。在(2)的條件下,為了獲得更大的利潤,該廠決定提高甲禮品的售價(jià),并重新調(diào)整甲、乙禮品的生產(chǎn)數(shù)量,問:提高甲禮品的售價(jià)多少元時(shí)可獲得最大利潤,最大利潤為多少萬元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖二次函數(shù)的圖象與軸交于(– 1,0),(3,0);下列說法正確的是(    )
          A.
          B.當(dāng)時(shí),y隨x值的增大而增大
          C.
          D.當(dāng)時(shí),

          查看答案和解析>>

          同步練習(xí)冊(cè)答案