日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知在RtABC中,∠ACB90°,BD是△ABC的角平分線,EAB上一點(diǎn),且AEAD,連接ED,作EFBDF,連接CF.則下面的結(jié)論:

          CDCF;

          ②∠EDF45°;

          ③∠BCF45°;

          ④若CD4,AD5,則SADE10.其中正確結(jié)論的個(gè)數(shù)是( 。

          A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

          【答案】C

          【解析】

          首先證明∠EDF=45°再利用全等三角形的性質(zhì)以及圓周角定理、角平分線的性質(zhì)定理一一判斷即可.

          AD=AE


          ∴∠ADE=AED,
          ∵∠AED=ABD+BDE,
          2ABD+2BDE+A=180°,
          BD平分∠ABC
          ∴∠ABC=2ABD,
          ∵∠ACB=90°,
          ∴∠A+ABC=90°
          2BDE=90°,
          ∴∠BDE=45°,
          EFDF
          ∴∠EFD=90°,
          ∴∠EDF=FED=45°,故②正確,
          延長EFBCH,連接CD


          ∵∠FBE=FBH,BF=BF,∠BFE=BFH,
          ∴△BFE≌△BFHASA),
          EF=FH,∵DFEH
          DE=DH,
          ∴∠DEH=DHE=45°
          ∵∠DFH+DCH=180°,
          DF,H,C四點(diǎn)共圓,
          ∴∠DCF=DHF=45°
          ∴∠BCF=45°,故③正確,
          DMABM,
          BD平分∠ABCDCBC,DMAB,
          DM=DC=4,
          AE=AD=5
          SADE=AEDM=10,故④正確,
          無法判斷CF≠CD,故①錯誤,
          故選:C

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】中,垂直平分,分別交于點(diǎn)、垂直平分,分別交于點(diǎn)、

          1)請判斷△ANE的周長與AB+AC的和的大小,并說明理由.

          2)①如圖①,若∠B=34°,∠C=28°,求的度數(shù)為______;

          ②如圖②,若,則的度數(shù)為________

          ③若,則的度數(shù)為________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB⊥BC且AB=BC,DE⊥CD且DE=CD,請按照圖中所標(biāo)注的數(shù)據(jù),計(jì)算圖中實(shí)線所圍成的圖形的面積S是( )

          A. 36B. 48C. 72D. 108

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在等邊三角形點(diǎn)邊上的一點(diǎn),點(diǎn)邊上的一點(diǎn),連接為邊作等邊三角形連接

          如圖1,當(dāng)點(diǎn)與點(diǎn)重合時(shí),

          找出圖中的一對全等三角形,并證明;

          ;

          如圖2,若請計(jì)算的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知點(diǎn)O為△ABC的兩條角平分線的交點(diǎn),過點(diǎn)OODBC于點(diǎn)D,且OD4.若△ABC的周長是17,則△ABC的面積為( 。

          A. 34B. 17C. 8.5D. 4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(a,6),ABx軸于點(diǎn)B,cosOAB═,反比例函數(shù)y=的圖象的一支分別交AO、AB于點(diǎn)C、D.延長AO交反比例函數(shù)的圖象的另一支于點(diǎn)E.已知點(diǎn)D的縱坐標(biāo)為

          (1)求反比例函數(shù)的解析式;

          (2)求直線EB的解析式;

          (3)求SOEB

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,對稱軸為直線x=1的拋物線y=x2﹣bx+cx軸交于A(x1,0)、B(x2,0)(x1<x2)兩點(diǎn),與y軸交于C點(diǎn),且+=﹣

          (1)求拋物線的解析式;

          (2)拋物線頂點(diǎn)為D,直線BDy軸于E點(diǎn);

          ①設(shè)點(diǎn)P為線段BD上一點(diǎn)(點(diǎn)P不與B、D兩點(diǎn)重合),過點(diǎn)Px軸的垂線與拋物線交于點(diǎn)F,求BDF面積的最大值;

          ②在線段BD上是否存在點(diǎn)Q,使得∠BDC=QCE?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,OP平分∠MON,A是邊OM上一點(diǎn),以點(diǎn)A為圓心、大于點(diǎn)AON的距離為半徑作弧,交ON于點(diǎn)B、C,再分別以點(diǎn)B、C為圓心,大于BC的長為半徑作弧,兩弧交于點(diǎn)D、作直線AD分別交OP、ON于點(diǎn)E、F.若∠MON=60°,EF=1,則OA=__

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】有一個(gè)二次函數(shù)的圖象,三位同學(xué)分別說出了它的一些特點(diǎn):

          甲:對稱軸為直線x=4

          乙:與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)都是整數(shù).

          丙:與y軸交點(diǎn)的縱坐標(biāo)也是整數(shù),且以這三個(gè)點(diǎn)為頂點(diǎn)的三角形面積為3.請你寫出滿足上述全部特點(diǎn)的一個(gè)二次函數(shù)解析式__________________

          查看答案和解析>>

          同步練習(xí)冊答案